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1. Introduction 

 

Many climatic processes exhibit extreme 

variability, which may be on daily, seasonal, or 

year-to-year time scales. Thus, the variability of 

climatic data occurs on many temporal scales, but 

some timescales are more significant than others 

and thus involve more spectral density (Mitchell, 

1976; von der Heydt et al., 2021). For instance, 

the temperature would vary over a wide range of 

timescales, from a few minutes to daily, monthly, 

annual, and even multi-decadal to millennial 

scales. Therefore, identifying dominant 

variability scales of terrestrial atmosphere data  
 

and finding significant cyclical behaviors in the 

related signals are crucial, as well as other 

statistical moments, in statistical weather and 

climate forecasting. Air temperature and 

precipitation are the most fundamental elements 

for describing the climate and their variabilities 

can influence some important quantities such as 

humidity and hydrological variables (Peixoto 

and Oort, 1992; Tsiropoula, 2003; Zhang et al., 

2019). Therefore, examining their oscillations in 

different timescales and finding any possible 

relationship between these two fundamental 

variables is of great importance. Information 

about the variability of temperature and  

Sustainable Earth Review 

The current research aims to carry out a multi-timescale variability analysis for the 

time series of sunspots (SN) precipitation (Pr) and maximum temperature (Tmax) in 

four main stations in the western area of Iran. In addition, the emphasis is on the 

impact of the decadal solar cycle on the variability of climatic quantities. 

Appropriate statistical methods were employed to investigate the relationships 

between reconstructed time series. The results demonstrated that the more intense 

intra-annual to inter-annual fluctuations of the SN signal are synchronized with the 

peak of the decadal component of sunspots. For the monthly precipitation, the 

deviation from the regular yearly pattern is markedly related to intense intra-annual 

variations in comparison to the inter-annual plus decadal variations. While the 

dominant mode of variability of the SN, which contains 89% of the variance, occurs 

at low friquencies according to cumulative spectral power (CSP), the contribution of 

this band in the variability is less than 10% for the Pr and is trivial for the Tmax. The 

result of wavelet coherence (WTC) analysis indicates a close connection between 

the variability of Tmax and Pr at different timescales over the region, except for the 

32-128-month scale, which is free of significant common oscillations. Furthermore, 

a signature of a significant decadal fluctuation was also observed between Tmax and 

Pr which shows a completely different phase relationship for this timescale when 

compared to all smaller scales.  
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Precipitation is crucial since an understanding 

of their characteristics is extremely important 

for decision-making in the fields of water 

resources management, agricultural planning, 

economic and energetic issues, and determining 

the current and future climatic changes 

(Neukom et al., 2010; Jakob and Walland, 

2016; Pendergrass et al., 2017). On the other 

hand, various external and internal climate 

forcings modulate these quantities. 

Temperature is affected by the action of a 

complex combination of terrestrial elements 

that can be controlled by numerous factors, 

including individual solar–astronomical 

components (Scafetta, 2014). In addition, 

precipitation time series also show highly 

complex behavior and thus have a noisy and 

erratic nature (Unnikrishnan and Jothiprakash, 

2018; Neyestani et al., 2022). However, the 

description of precipitation characteristics and 

their prediction is of high climatological interest 

(Unnikrishnan and Jothiprakash, 2018, Pham et 

al., 2020; Yilmaz et al., 2021; Fahad et al., 

2023). One of the most important external 

forcings impacts on atmospheric data is the 

change in the intensity of solar radiation. In 

addition to the fact that each latitude receives a 

specific amount of radiation during the year due 

to various astronomical and terrestrial factors, 

which leads to the variability in many 

meteorological quantities, other variabilities 

due to solar activities have been identified in the 

climate system (Roy and Kripalani, 2019). 

These activities can have significant effects on 

the spectral characteristics of incoming solar 

radiation (insolation) and consequently can 

cause other atmospheric variables to be 

influenced (i.e. natural climate variability). 

Indeed, the incoming solar radiation provides 

the energy budget for the earth and acts as the 

external driving for the earth-atmosphere 

system. The terrestrial factors such as clouds 

also have substantial effects on the incoming 

and outgoing radiation (Arking, 1991). There 

are several pieces of evidence from the 

scientific literature that show the solar influence 

on the atmospheric variables in different parts 

of the world over varying timescales (Xu and 

Powell, 2013; Thieblemont et al., 2015; Zhai, 

2017; Sfica et al., 2018; Ogurtsov et al., 2020; 

S et al., 2022). The emphasis of these 

investigations is on the impact of the variability 

of sunspots on precipitation and temperature. 

For instance, Sfica et al. (2018) examined the 

solar influence on eight climatic parameters 

recorded in Romania during 1961–2013 which 

corresponds with four cycles of sunspots. They 

found a weak solar influence with a clear spatial 

pattern, especially during the cold season, on 

temperature and cloud cover. Due to the 

extreme variability of sunspots in an 

approximately 11-year cycle, investigating their 

possible effects on atmospheric variables, 

especially at the same frequency, has received 

much attention. Nevertheless, assessing to what 

extent the 11-year solar cycle affects these 

variables has been a controversial issue and 

more clarification is required. Some researchers 

have claimed the insignificant impact of 

sunspots on the climate (Gil-Alana et al., 2014; 

Aparicio et al., 2020) and others have found 

some significant signatures (Laurenz et al., 

2019; Zhang et al., 2021). Thus, there is no 

consensus about the possibility of a significant 

relationship between sunspot numbers and 

global atmospheric variability and additional 

investigations are required to improve our 

present knowledge. According to satellite data, 

total solar irradiance (TSI) varies by about 0.1% 

during each 11-year solar cycle between each 

solar minimum and solar maximum (Frohlich 

and Lean, 2004). Thus, direct and indirect 

cooling and warming of the Earth’s surface and 

its atmosphere might somewhat be due to the 

changes in the number of sunspots. However, 

the variation of TSI during a solar cycle is trivial 

to directly trigger considerable impact on long-

term climate variability (Svensmark and Friis-

Christensen, 1997). Hence other indirect 

physical mechanisms can be responsible for 

possible significant impacts proposed in the 

scientific literature (Haigh, 1996; Svensmark 

and Friis-Christensen, 1997; Meehl et al., 2009; 

Svensmark et al., 2016). In addition, the role of 

clouds in energy balance is of high importance. 

The global coverage of clouds can be observed 

and gathered by satellites, and according to the 

recent studies, the global cloudiness can varied 

during the solar cycle due to the change in 

cosmic ray flux (Audu and Okeke, 2019). The 

variation in cloud cover due to 11-year solar 

activity can have a significant effect on the 

radiation balance and insolation. As a result, 

indirect effects such as the change in global 

cloudiness and the dynamics of general 

circulation pattern play a major role in the 

special distribution of the atmosphere’s 

responses to solar variability (Kumar et al., 

2023). The suggested changes in cloud covers 

due to solar activity are associated with changes 
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in rainfall and temperature (Audu and Okeke, 

2019). Even though solar-induced changes 

because of the sunspots in global mean air 

surface temperature may be relatively small, 

regional and seasonal temperature changes 

associated with solar variability can be 

significant (de la Casa and Nasello, 2012). In 

addition, the variability of sunspots is not 

limited to the 11-year and the number of 

sunspots changes in different timescales. 

However, the 11-year oscillation is the main 

cyclical feature in the sunspots, which includes 

a large part of the variance. Besides solar 

variabilities, other usually more effective 

factors influence the surface climate, which 

obscure the solar signal and complicate its study 

(Gruzdev et al., 2019). For instance, the El 

Nino–Southern Oscillation (ENSO), volcanic 

eruptions, the quasi-biennial oscillation (QBO), 

and nonlinearity of processes that are 

responsible for solar-terrestrial connections 

could have a substantial effect (Ogurtsov et al., 

2020). The issue under investigation in this 

paper deals with the following questions: 1. Can 

we obtain a noticeable and significant 

relationship between the precipitation and 

temperature data at different timescales? 2. Is 

there a significant relationship between the 

multiscale variations of sunspots and the 

variabilities in the precipitation and temperature 

on a regional scale? Thus, this study not only 

considers multi-timescale variations in the 

temperature and precipitation but also aims to 

collaborate on the debate regarding the 

influence of solar variability on precipitation 

and temperature. In the following, we have 

elucidated the temperature and precipitation 

variability and then have concentrated on the 

solar impact at regional scales based on 

analyses of precipitation and temperature 

recorded in the main stations over western Iran 

during 1979–2021. The study area and the 

datasets are described in section 2. In section 3, 

the methods of analysis and their 

implementations are fully explained. Time 

variations of co-variabilities are studied through 

the wavelet coherences and described in Section 

4. For further consideration, other statistical 

methods such as correlation and spectral 

analyses are applied to the time series, and the 

results are presented in section 4. The results are 

discussed in section 5, and some conclusions of 

our statistical results are summarized in section 

6. 

 

2. Material and Methods 

 

2.1. Study area and datasets 
 

The study area is located in the western part 

of Iran. It extends between 34° and 36° North 

latitudes and 47° and 49° East longitudes (Fig. 

1). This area is located in the central part of the 

Middle East, which is very vulnerable to facing 

climate change effects (Mansouri Daneshvar et 

al., 2019). In addition, the topography of the 

selected area is very complex, which can 

impose other constraints in the variability of the 

climatic time series. Four main stations with 

long-term data are selected for the analyses, 

including Kermanshah, Sanandaj, 

Khorramabad, and Hamedan. Monthly values 

of precipitation and maximum temperature over 

this area, provided by the Iran Meteorological 

Organization (IRIMO), were used in this study. 

By using monthly maximum temperature 

instead of monthly mean (minimum) 

temperature, we supposed that the impact of 

solar variability is more pronounced in 

maximum temperature rather than minimum 

temperature. The period of analysis consists of 

42 years, starting from January 1979 and ending 

in December 2020. The raw data is normalized 

using the Z-score normalization method 

(section 3.1).  

 
Fig. 1. The distribution of the selected stations over the western part of Iran 
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Monthly sampling values and the short length 

of the statistical period restricted us to only 

studying well-resolved variabilities. Thus, all 

variabilities between 2 to 143 months were 

extracted from the time series and studied. 

Precipitation and temperature time series, as 

with any tropospheric parameter, have a 

pronounced annual variation in this area 

(dominant mode of variability). Therefore, we 

carry out this investigation for the intra-annual 

(2-9 months), annual (9-18 months), and inter-

annual plus decadal (18-143 months) bands. 

Statistical characteristics of the precipitation 

(Pr) and maximum temperature (Tmax) for the 

selected stations are described in Table 1. 

Monthly sunspot data (SN) were obtained from 

the World Data Center for the Production, 

Preservation, and Dissemination of the 

International Sunspot Number 

(https://www.sidc.be/silso/datafiles) for 

approximately four solar cycles, which 

correspond to the study period. The monthly 

sunspot data are also normalized according to 

the procedure used for the atmospheric data. 

The average monthly values of sunspots during 

the study period is 86, and its maximum is 284. 

 

  Table 1. Summary of the statistical information for selected stations during the period 1979-2021. 
 

 
Station name 

 

Latitude 
(°North) 

 

Longitude 
(°East) 

 

Elevation 
(m) 

Average 

annual 
precipitation 

(mm) 

Average 

annual 
maximum 

temperature 

(°C) 

Standard 

deviation of 
precipitation 

(mm) 

Standard 

deviation of 
maximum 

temperature 

(°C) 
Kermanshah 

Sanandaj 

Khorramabad 
Hamedan 

34.32 

35.31 

33.46 
34.7 

 

47.08 

46.99 

48.33 
48.51 

 

1350 

1538 

1147 
1850 

35.3 

35.1 

40.9 
26.3 

23.4 

22.2 

25.2 
19.7 

40.9 

38.6 

48.6 
28.3 

10.8 

11 

10.3 
11 

 
2.2. Methods of analyses 
 

2.2.1. Z-score normalization 

First, we standardized the raw (original) data by 

employing the Z-score normalization technique. 

The Z-score normalization refers to the process 

of normalizing every value in a dataset such that 

the mean of all of the values is zero and the 

standard deviation is one. This procedure is a 

linear transform, which does not change the 

shape of the data distribution. The Z-score is 

computed straightforwardly according to the 

following equation (Han et al., 2023; Wilks, 

2019): 

𝑧 =
𝑥−�̅�

𝑆𝑥
                                                                     (1) 

where 𝑥 is the raw data, �̅� is the average and 𝑆𝑥 

is the sample standard deviation for the entire 

period. The normalization makes it simple to 

evaluate fluctuations of different data sets if 

they have different means and standard 

deviations. The idea behind the standardization 

is to try to remove the influences of location and 

spread from a data sample. The physical units 

of the original data cancel, so standardized 

anomalies are always dimensionless quantities. 

The aforementioned standardization was 

applied for the SN, Tmax and Pr signals, 

separately. This transform helps to remove the 

zero frequency component of the data in the 

frequency space, which means the constant 

mean of the data is not included in the produced 

data. Subsequently, Lanczos low-pass, band-

pass, and high-pass linear filters (Duchon, 

1979) are used to isolate and study the different 

frequency bands of the time series. The 

standardized time series are broken down into 

three spectral bands by the linear filter. The first 

band (Band-1: 2-9 months) corresponds to 

intra-annual (sub-seasonal) fluctuations, and the 

second band (Band-2: 9-18 months) is 

indicative of annual variation to a large extent. 

The third band (Band-3: 18-143 months) is 

extracted from the data to be representative of 

inter-annual plus decadal fluctuations (i.e. 

longer-term variability: low-frequency 

component). Due to the monthly sampling time 

between each value, it is not possible to reveal 

the variabilities and their intensities for scales 

shorter than two months. In addition, the length 

of the data (42 years corresponds to 504 

months) is another restrictive factor on the 

signal processing, which causes uncertain 

identification of the variabilities for longer 

timescales in the time series, for instance, inter-

decadal and centennial scales. Thus, all the 

unclear variabilities at longer timescales than 

the decadal scale were filtered out to produce 

reconstructed signals before the spectral 

analysis.   
2.2.2. Cumulative Spectral Power 

A compact way of presenting fluctuations of 

some observation over different temporal scales 
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is through a power spectral density (PSD) (von 

der Heydt et al., 2021). The sharper peaks in the 

PSD diagram are straightforwardly interpreted 

and tend to be associated with frequencies in 

external quasi-periodic forcing related to the 

monthly, yearly, and longer or shorter periods. 

The broader peaks in turn often involve physical 

mechanisms within the climate system that vary 

on “typical” timescales but not on a well-

defined period. Overall sharper and broader 

peaks exhibit preferred frequencies in the 

atmospheric time series, namely specific modes 

of climate variability. Furthermore, the 

continuous background spectrum is also 

considered. The PSD method can be unsuitable 

for time-varying noisy signals (Peters, 2007). 

As a solution, Cumulative Spectral Power 

(CSP) can be used to overcome some of the 

limitations of PSD (Neyestani et al., 2022). The 

CSP is similarly related to the PSD as the 

cumulative probability function (CPF) is 

constructed from the probability density 

function (PDF) in statistics. In other words, the 

CSP can be calculated by integrating the PSD 

function in the frequency domain. Since 

different fluctuations appear in climatic signals, 

integration of the PSD decreases the influence 

of the underlying noises in the frequency 

domain while preserving the essential 

information in a much more noticeable way. In 

the current study, the PSDs and CSPs for the 

reconstructed signals were computed, and some 

dominant components of variability were found 

in the related curves, along with their relative 

power. 
2.2.3. Lagged Correlation 

The correlation coefficient, r, is a way to 

determine how well two datasets co-vary 

linearly in time or space. For two random 

variables x (x1, x2, …, xN) and y (y1, y2, …, yN), 

the correlation coefficient (also known as the 

Pearson correlation) can be written as 

(Thomson and Emery, 2014): 

𝑟 =
𝐶𝑥𝑦

𝑠𝑥𝑠𝑦
                                                                 (2) 

where 𝐶𝑥𝑦 is the covariance of the x and y series, 

which is defined by: 

𝐶𝑥𝑦 =
1

𝑁−1
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑁

𝑖=1                    (3) 

where 𝑠𝑥 and 𝑠𝑦 are the standard deviations, and 

�̅� and �̅� are the sample mean for the two data 

records. The degree of correlation in the 

datasets provides a way of roughly estimating 

the number of degrees of freedom within a 

given set of observations. The Pearson 

correlation as a global measure can be 

calculated between each pair of observations at 

different time lags (i.e. lagged correlation). A 

lag of "m" means that the first m values of one 

of the series, say the y series, are removed so 

that ym+1 becomes the new y1 and so on 

(Thomson and Emery, 2014). If a meaningful 

relationship exists between the two variables, it 

could be understood from the high correlations 

between them at a specific time lag (shift). In 

this study, the correlation coefficients at 

successive lags are calculated in order to find 

the possible significant relationships. 
2.2.4. Wavelet coherence 

The wavelet coherence (WTC) analysis is used 

to find the common scale-dependent 

fluctuations for (nonstationary) climatic time 

series in the time-frequency space (Roushangar 

et al., 2018). This method is especially useful in 

determining the time and scale intervals where 

two phenomena have a substantial interaction 

(Velasco and Mendoza, 2008). A squared 

wavelet coherence estimator (Addison, 2017; 

Torrence and Webster 1999) is defined as 

follows: 

𝑊𝐶𝐻𝑔,ℎ
2 (𝑎, 𝑏) =

|⟨𝑇𝑔
∗(𝑎,𝑏)𝑇ℎ(𝑎,𝑏)⟩|

2

〈|𝑇𝑔(𝑎,𝑏)|
2

〉〈|𝑇ℎ(𝑎,𝑏)|2〉
                                         

(4) 

where ‘g’ and ‘h’ are a pair of sample time 

series, and the ‘*’ indicates the complex 

conjugate of the continuous wavelet transform 

(CWT) for one of the time series. The ⟨⟩ symbol 

represents a localized smoothing operation in 

both time and scale performed on the 

constituent transform components. 𝑇(𝑎, 𝑏) 

shows the CWT at the scale and location 

parameters 𝑎 and 𝑏, respectively, which is given 

by (Addition, 2017): 

𝑇𝑥(𝑎, 𝑏) = ∫ 𝑥(𝑡)𝛹𝑎,𝑏
∗+∞

−∞
(𝑡)𝑑𝑡                                         

(5) 

Equation 5 contains both the time series, x(t), 

and the conjugate of the dilated and translated 

mother wavelet, 𝛹∗((𝑡 − 𝑏) 𝑎⁄ ). The Morlet 

complex mother wavelet is used in climate 

studies because it provides a good balance 

between time and frequency localization 

(Torrence and Compo, 1998; Grinsted et al., 

2004). This mother wavelet can be shown as: 

𝛹(𝑡) =
1

𝜋
1
4

𝑒𝑖2𝜋𝑓0𝑡𝑒
−𝑡2

2                                                (6) 

According to equation 6, the Morlet mother 

wavelet is a complex wave within a Gaussian 

envelope and 𝑓0 is the central frequency of the 

mother wavelet. The mother wavelet can be 

transferred to different locations on the time 
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series. In addition, it can be stretched and 

squeezed. Hence, one can compute the CWT 

along the time series and for different scales of 

the wavelet, through Eq. (5). Since the data 

were used are monthly data, the parameters for 

the CWT analysis were set as δt = 1 month 

(sampling time between each value), a0 = 2δt = 

2 months (minimum scale of the wavelet), δj = 

0.1 (octaves per scale), and maximum scale sets 

to 144 months. Hence, scales continuously 

ranged from two up to 144 months. The value 

of f0, which is the frequency localization, was 

also chosen to be 6 for the Morlet wavelet for a 

better balance between time and frequency 

localization. 
 

3. Results and discussion 
 

3.1. Time series and their power spectra 
 

The reconstructed time series based on the 

three spectral bands (from intra-annual to 

decadal) for sunspots (SN), maximum 

temperature (Tmax), and precipitation (Pr) during 

the study period are presented in Figs. 2-4, 

respectively. This representation enables us to 

compare the variability of the selected 

parameters at different temporal scales. The 

prominent low-frequency variability is the main 

feature of the SN signal, and other fluctuations 

are relatively weak (Fig. 2a). The intra-annual 

variability (Band-1) is considerable when the 

solar activity is the greatest (i.e., solar 

maximum) compared to the years of solar 

minimum (Fig. 2b). The magnitude of the 

annual variability (Band-2) becomes larger 

when the sunspot numbers are maximum, 

similar to the intra-annual variability but with 

less intensity (Fig. 2c). 

 

 
Fig. 2. Normalized time series of for the monthly sunspots data during the period 1979–2021: (a) The constructed SN signal contains all 

frequency components, from intra-annual to decadal, (b) Intra-annual fluctuations of SN, (c) Annual fluctuations of SN, and (d) Inter-annual 

plus decadal fluctuations of SN. 

 

In other words, not only the solar-maximum 

years are indicative of the maximum of the 11-

year component of solar cycle, but also, they are 

prone to intensify the solar variabilities in all 

smaller timescales. As shown in Fig. 2d, the 

most apparent feature of the SN signal is a 

dominant 11-year cycle with a double-peaked 

structure at Band-3 (i.e., inter-annual plus 

decadal scales). This structure at the solar-

maximum years can originate from the 

pronounced inter-annual variability during the 

solar-maximum years in which solar activities 

are considerable. The magnitude of the 

fluctuations in the intra-annual, inter-annual 

plus decadal bands for the Tmax is fairly small, 

compared with the magnitude of the original 

signal (Fig. 3b-d and Fig. 3a). Meanwhile, the 

annual component is highly robust and regular 

(Fig. 3c) and hence has a substantial impact on 

the behavior of monthly temperature series (Fig. 

3a). The relative magnitude of the intra-annual 

fluctuations displays a substantial variability in 

the precipitation time series in all years, 

especially in 1985 and 1995 (Fig. 4b). The 

annual component of precipitation, which is the 

main component of the precipitation variability 

in the western part of Iran, is inversely 

associated with the maximum temperature at 

the same timescale (Fig. 4c and Fig. 3c). It 

clearly shows that the highest precipitation 

amount due to the annual cycle occurs in the 

cold season. However, the intensity of the 
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precipitation fluctuations in this cycle is subject 

to noticeable variations than in the temperature 

in different years. Furthermore, the monthly 

precipitation fluctuations cover a broader range 

of effective timescales compared to the 

temperature that has relatively predictable 

behavior on an annual basis. More systematic 

variability for Tmax can make it a potential 

candidate for predicting the general monthly 

precipitation behavior according to temperature 

variations at different timescales. Compared 

with the Pr, the contribution of intra-annual, 

inter-annual plus decadal variabilities (Band-1 

+ Band-3) in reconstructing the Tmax signal is 

rather trivial.  

 
Fig. 3. As Fig. 2., but for the maximum temperature. 

 

 
Fig. 4. As Fig. 2., but for the precipitation. 

 

The power spectral density (PSD) for each time 

series is shown in Fig. 5. Generally, the power 

of the SN signal is considerable at 0.008 cpm 

(corresponds to approximately 10.5 years). This 

high spectral peak is significant at a 5% 

significance level. Furthermore, the magnitude 

of the fluctuations is higher at low and 

intermediate frequencies, but none of the 

spectral peaks except the 11-year peak are 

significant. In addition to the annual significant 

peak at Band-2 for the Tmax, another significant 

peak can be observed at 0.17 cpm, which 

corresponds to a 6-month periodicity. The 

power spectra for the precipitation show three 

significant peaks at 0.08, 0.17, and 0.25 cpm, 

which imply 12-, 6-, and 4-month periodicity, 

respectively. The insignificant fluctuations of Pr 

spread equally over the frequency range, with 

larger magnitudes in comparison to the same 

componants in Tmax. Fig. 6 exhibits the CSP 

diagrams for the reconstructed SN, Tmax, and Pr 

signals. As mentioned in the previous section, 

only the variabilities between 2-143 months 

were employed to estimate the variances of the 
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estimated signals in the frequency space. These 

curves show how the variance of each data 

series is distributed over the frequency range 

(harmonics). In addition to dominant scales of 

variability, possible periodicities can be found 

by precisely tracking the significant changes in 

the slopes between the adjacent harmonics. It 

should be noted that the CSP values are 

normalized (by the variance of each signal) and 

then multiplied to 100 to express the resulting 

values in percent (%). As can be seen in Fig. 6, 

sharp variation in the slope at a specific 

harmonic reveals the possible periodic (or 

almost periodic) components, which the 

magnitudes show the relative power. Because of 

the cumulative nature of the CSP curves, 

estimating the relative power for each harmonic 

should be obtained by subtracting the value of a 

specific harmonic in the CSP diagram from the 

value of the preceding harmonic. Hence, lines 

with zero slopes (perfectly flat in the horizontal 

direction) between two consecutive harmonics 

denote no variability in the succeeding 

harmonic. Moreover, moderate slopes over 

narrow or broad ranges of successive harmonics 

can be related to quasi-periodic or completely 

stochastic fluctuations, respectively. For 

instance, the considerable change in slope of the 

CSP diagram for the SN signal at harmonic 4, 5, 

and 6 seems to be associated with robust quasi-

periodic component (large and sudden change 

in the slope: marked by black points), which 

contain 77% of the SN signal’s variane. The 

high-frequency components (intra-annual and 

annual: Band-1 and Band-2) merely cover 11% 

of the SN signal’s variance and behave 

stochasticly with small amplitude oscillations 

(Figs. 6 and 7). Furthermore, the inter-annual 

stochastic variations of SN are dominant 

between harmonics 6-17, corresponding to 29-

84 months (contain 10% of the variance). For 

the Pr and Tmax, the annual periodicities are 

evident with extremely sharp slopes (harmonic 

41-43), which comprise 95% and 43% of the 

variabilities for the Tmax and Pr, respectively. 

This familiar winter-summer cycle is forced by 

variations in sunlight from the (very close to 

perfect) periodic motion of the earth around the 

sun, which causes the season change. Other 

almost cyclical behaviors, but with small 

intensity, can be noticed around 6- and 4-month 

periodicities (harmonic 83-91 and harmonic 

125-127, 5% and 4% of the variance, 

respectively) for the precipitation. The impact 

of the 6-month cycle is less clear for Tmax 

relative to the Pr. Overall, the intra-annual, 

inter-annual, and decadal variabilities of 

monthly maximum temperature are trivial, with 

dominant stochastic natures, relative to the 

annual component (1% for Band-3 and 4% for 

Band-1). The variabilities of the precipitation 

(with dominant stochastic nature) are 6% (of the 

variance) for inter-annual plus decadal and 47% 

for intra-annual harmonics. In order to identify 

the possible relationship between the main 

cyclical component of SN and both Pr and Tmax, 

low-frequency components at Band-3 are 

precisely considered at the bottom of Fig. 6. The 

sudden 1% increase in the slope of the CSP for 

the precipitation at harmonic 5 and 6 suggests a 

possible relationship between the SN and the Pr 

at the decadal scale with a similar periodicity. 

In addition, the normal change in the slope for 

Tmax in this band can be associated with the solar 

activities at Band-3.   

 

 

 
    Fig. 5. Power spectral density (PSD) for the SN, Tmax and Pr without taking into account the main periodic component (top) and for the 

frequency band that contains the main spectral peak for each signal (bottom). 

 

Figure 7 represents the relative percentage of 

the different variabilities at three bands (Band-

1, Band-2, and Band-3) from the total variance. 

Approximately 90% of the SN variance 

stemmed from the decadal and inter-annual 

variabilities. For both the Tmax and Pr, the intra-
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annual variabilities are more effective than 

inter-annual and decadal variabilities, and the 

annual variabilities are the main component of 

the signals. Therefore, it can be concluded that 

the annual fluctuations of Tmax and Pr largely 

determines the monthly precipitation and 

temperature behavior in this region, without 

taking into account the inter-decadal and 

millennia variations (very low-frequency 

variations is not included in the reconstructed 

signals).   

 

 

  
Fig. 6. Relative cumulative spectral power (CSP) (%) for the SN, Tmax, and Pr time series. The harmonics less than 3 (corresponding to the 
periodicities greater than 12 years) are filtered out from the raw data because of the constraint imposed by the length of the time series. The 

largest harmonic (the component with highest frequency) corresponds to the two-month periodicity, which can be resolved from monthly data. 

The CSP for the harmonics less than 28 is displayed again at the bottom to reflect the effect of the 11-year solar cycle between harmonic 4-6 
on Tmax and Pr.   

 

 
Fig. 7. The percentage of the variance for SN, Tmax and Pr for different variabilities at different timescales.  

 

For a thorough comparison, the decomposition 

of the variances for both Tmax and Pr at each 

station is depicted in Fig. 8. Khorramabad 

station is more affected by the annual 

variabilities relative to other stations for both 

the Tmax and Pr. Hamedan station is more under 

the influence of intra-annual, inter-annual, and 

decadal fluctuations for both parameters. On the 

whole, due to the geographical proximity of 

stations, considerable differences were not 

observed. 
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Fig. 8. A comparison among the relative intensities of variability at different timescales and for each station over the western part of Iran, (a) 

Pr, and (b) Tmax.  

 

3.2. Correlation analysis 
 

Pearson correlation coefficient was used to 

measure the similarity between each pair of 

reconstructed signals (SN and Tmax, SN and Pr, 

and also Tmax and Pr) at different time lags. It 

demonstrates the strength of a linear 

relationship between the time series considering 

a range of time lags. The significance of the 

correlations was tested based on the two-tailed 

student’s t-test at 95% confidence level. In order 

to explore the relationship between the sunspots 

and the selected atmospheric variables, the 

correlation coefficients were calculated from 

lag 0 to lag 150 (0-150 months). A wide range 

of lags was considered since a large variability 

of SN signal arises from the potent 11-year 

cycle (~ 132 months). The correlation analysis 

was carried out with three data series: 1. The 

reconstructed signals based on all constituent 

frequencies (2-143 months), 2. The low-

frequency components of the data (Band-3), and 

3. The reconstructed signals with filtering out 

the annual significant peak from the Tmax and Pr 

signals. Considering all frequency components 

(Band-1 + Band-2 + Band-3), the cross-

correlation coefficients are small (less than 

±0.1) at different lags (Fig. 9a). However, these 

coefficients manifestly reflect the main 

periodicities in the SN, Tmax, and Pr signals. The 

cross-correlation coefficients between the SN 

and Tmax are insignificant for all lags. 

Meanwhile, the cross-correlations between SN 

and Pr are small but are significant at 95% 

confidence levels for some lags (lag 39-41 and 

50-55). By only considering the inter-annual 

plus decadal components at Band-3, the cross-

correlation coefficients increased compared to 

the situation with all frequency constituents in 

Fig. 9a (Fig. 9b). The correlation between SN 

and Pr reaches its maximum positive value (~ 

+0.35) at lag 54-57, and it is significant at a 95% 

confidence level (Fig. 9b). Meanwhile, the 

correlation between SN and Tmax drops to its 

(maximum) negative value (~ -0.35) at lag 32-

34. Most of the correlations between SN and Pr, 

and also SN and Tmax at different lags are 

statistically significant at a 95% confidence 

level for Band-3. Furthermore, the effect of the 

11-year cycle of sunspots is clearly seen in the 

changes in the correlation coefficients with 

respect to the time lags for both temperature and 

precipitation, which have different phase 

relationships. The cross-correlation analysis for 

the SN-Tmax and SN-Pr without considering the 

prominent annual cycle in the Tmax and Pr 

signals indicates small and significant cross-

correlation coefficients (Fig. 9c). It can be seen 

in Fig. 9c that the fluctuations of the cross-

correlation function follow a similar pattern like 

the cross-correlation function in Band-3 (Fig. 

9b), but with smaller correlation coefficients 

due to the inclusion of high- and intermediate-

frequency components in the data. Table 2 

indicates the correlation between the 

reconstructed Tmax and the Pr series for each 

station and for the whole area. Merely 

correlations at lag 0 are shown, and the behavior 

of correlation coefficients for other lags is 

described in the following (Figures not shown). 

Considering all temporal variabilities in each 

signal (all three frequency bands), the 

correlation coefficients are always large and 

negative at lag 0 and significant at a 5% 

significance level. Hence, the large negative 

values imply a linear inverse strong relationship 

between precipitation and maximum 

temperature. In addition, because of the 

powerful annual variations in both Tmax and Pr, 

the correlation coefficients that are calculated 

for Band-2 are extremely large for all stations. 

More investigation demonstrated that the 

modulus of the correlation coefficient is the 

largest at lag 0 compared to other lags for Band-

1 (intra-annual), Band-2 (annual), and also the 

main estimated signals (Band-1 + Band-2 + 
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Band-3). The calculated correlations for Band-

1 and Band-3 are lower when compared to 

Band-2 (the annual component), but are always 

negative and significant at a 5% significance 

level in all three bands at lag 0. Among all 

stations, Khorramabad station has the highest 

negative correlations at Band-1 and Band-3. 

Moreover, the correlation coefficients at Band-

1, Band-2, and Band-3 oscillate between 

negative and positive values at subsequent lags 

with approximately 6-month, 12-month, and 

26-32-month periodicity, respectively (Figures 

not shown). Generally, a dominant anti-phase 

relationship appeared between precipitation and 

maximum temperature at intra-annual, annual, 

and inter-annual scales.  
 

 
Fig. 9. Lagged cross-correlation for the SN-Tmax and SN-Pr: (a) Considering all stochastic and periodic frequency components (Band-1 + Band-
2 + Band-3) for SN, Tmax and Pr, (b) Data at Band-3 (inter-annual plus decadal components), and (c) Considering all frequency components for 

SN, Tmax, and Pr after filtering out the apparent annual cycle from the atmospheric data. The blue dashed lines show upper and lower confidence 

bounds at 95% confidence levels. 
 

  Table 2. Pearson correlation at lag 0 between maximum temperature and precipitation at confidence level of 95%. 
 Total area Kermanshah Hamedan Khorramabad Sanandaj 

All three bands -0.74 -0.69 -0.64 -0.73 -0.67 

Band-1 

 (intra-annual) 

-0.34 -0.31 -0.27 -0.39 -0.26 

Band-2 

(annual) 

-0.94 -0.93 -0.90 -0.93 -0.92 

Band-3 

(inter-annual plus 

decadal) 

-0.43 -0.36 -0.29 -0.59 -0.33 
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3.3. Wavelet coherence analysis (WTC) 
 

The wavelet coherence plots, which reveal the 

magnitude and phase of the coherences (or 

localized correlations) between the SN and Pr 

signals at different scales (periodicities), as well 

as changes in the correlation over time at every 

single station, are displayed in Fig. 10. The 

wavelet coherence spectrum for these series 

exhibits the presence of some significant 

annual, sub-annual, and inter-annual plus 

decadal coherences at each station. A collection 

of arrows was added to the high-coherence 

areas in the WTC plots, which shows the phase 

information regarding both time series. The 

right-pointing arrows indicate no phase shift 

between the SN and Pr (in-phase or synchronous 

relationship, which means the simultaneous 

occurrence of two phenomena). The left-

pointing arrows display half of a period shift 

(anti-phase relationship). Furthermore, vertical 

up- (down-) pointing arrows imply that the SN 

is lagging (leading) with respect to the Pr for one 

full quarter of a period, which indicates an out-

of-phase situation. Continuous black contours 

in the WTC plot, which surround the areas with 

high coherences, are indicative of the 5% 

statistical significance level for a red noise 

process. Furthermore, the light-shaded area 

outside the cone of influence (COI), which is 

under the influence of the edge effects, shows 

the region where the interpretation should be 

carried out with caution because of increased 

uncertainty. The arrows in the WTC plots are 

displayed to indicate the phase information only 

when the localized correlations are higher than 

0.6. According to Fig. 10, the scale of 2–8 

months (intra-annual variation) shows sporadic 

significant co-variability between the SN and Pr 

for all stations, in which the phase differences 

are variable (and therefore inconsistent) over 

time. On the other hand, as displayed in Fig. 7, 

only 9% of the variance of the SN signal is 

distributed in the intra-annual scale compared to 

approximately 42% for the precipitation. Thus, 

the direct effect of SN fluctuations at Band-1 on 

the Pr considering the whole statistical period 

can be negligible. Accordingly, due to 

inconsistent phase relationships, the co-

variabilities at the 2-8-month band can be 

regarded as insignificant at different stations. 

Because of the high similarity between the 

annual variations of Pr at all stations, the 

coherences show relatively similar patterns 

between SN and Pr at the 8-16-month band (Fig. 

10). Some significant intermittent coherences at 

the 8-16-month scale are evident mostly at the 

solar-maximum years. However, the phase of 

the fluctuations is not the same during the study 

period, similar to intra-annual coherences. The 

most significant correlations can be found in 

1998-2005 with dominant anti-phase 

relationships, which are concurrent with solar-

maximum years with a considerable annual 

variation of sunspots (Fig. 4). The insignificant 

and weak annual co-variability after 2005 can 

be due to a weak 11-year solar cycle, and the 

corresponding small annual fluctuations of SN. 

The reversal of phases is visible at different 

times for the 8-16-month scale. Overall, the 

possible effect of the inter-annual component of 

sunspots (16-100 months) on the same scale of 

precipitation fluctuations is mostly insignificant 

except for a limited number of years and in 

specific frequency bands, and the co-variability 

of these quantities does not occur with a 

consistent phase relationship during different 

years. All four stations in the inter-annual band 

show different coherence patterns. The sporadic 

high localized correlations can be observed 

during 1984-1987 and 2011-2013 for 

Kermanshah at a scale of 16-32 months, during 

1988-1994 in Sanandaj at a scale of 32-64 

months, and during 1985-1989 in Hamedan at a 

scale of about 64 months. A stable decadal co-

variability (128-month periodicity) with a 

permanenty anti-phase relationship is found 

between SN and Pr at all stations except for 

Hamedan. The WTC analysis between SN and 

Tmax exhibits higher similarity among all 

stations when compared to the same analysis 

between SN and Pr over the frequency range, 

even in intra-annual (2-8 months) and inter-

annual (16-100 months) scales (Fig. 11). The 

more pattern similarity for WTC plots of 

different stations for SN-Tmax than for SN-Pr is 

due to the more comparable temperature 

variabilities (on different timescales) at nearby 

stations. There are generally significant co-

variability patterns on timescales of less than 

four months in 1985, 1990, 1992, 1995, 1998, 

2008, 2010 and 2013. Furthermore, significant 

coherences on a 6-month scale were found in a 

few years (1981, 1986, 1989 and 2013), with 

dominant anti-phase relationships in the high 

coherences areas. In the annual scale (8-16 

months), significant localized correlations (with 

phase reversal) were observed for SN-Tmax 
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similar to SN-Pr, but with an opposite phase 

relationship (Figs. 10 and 11). A more 

important feature at the inter-annual scale in the 

WTC plots in Fig. 11 is the significant co-

variability of SN with Tmax in the scale of 16-32 

months between 2011-2015, with a phase 

difference of 180° which is also found in the 

wavelet coherence of the SN-Pr at Kermanshah 

station but with opposite phase (synchronous 

relationship, Fig. 10a). However, the high 

coherence areas is merely significant for 

Kermanshah, Sanandaj and Khorramabad 

stations at a 5% significance level, and is 

insignificant for Hamedan station. Another high 

coherence area with a phase difference of ~ 45° 

at this scale was found in 1989-1991, which is 

only significant in Khorramabad station at a 5% 

significance level. The WTC plots of SN-Tmax 

show that at the decadal scale (~ 100-140 

months), for all four stations, there is a stable 

fluctuation in the entire statistical period at a 

95% statistical confidence level (Fig. 11, 

bottom of the plots). The phase difference 

displayed by the arrows is ~ 100-120°, and since 

the direction of the arrows is almost upward, the 

Tmax is leading the SN with a phase difference 

of one-third of the period (3-4 years) on this 

scale. In other words, if the SN signal is 

considered as a cause and the Tmax signal as the 

effect, the peak of the 11-year fluctuation in 

Tmax has a phase delay of ~ 220-260° relative to 

the same peak in SN, which corresponds to ~ 7 

years. Hence, the minimum value of the 11-year 

component of Tmax occurs approximately 3-4 

years after the maximum of this component in 

SN (consistent with the result of lagged 

correlation in Fig. 9b: negative correlation 

around lag 36). However, it is noteworthy to say 

that despite the high and stable coherences, the 

Tmax in the decade band contains trivial power 

compared to other bands (Figs. 7 and 8). 

Therefore, regardless of the high coherence 

between the SN and Tmax in this band and the 

consistent phase relationship during all years, 

the effect of this localized high correlation on 

the variation of the maximum temperature at the 

selected stations and also on the (global) 

correlation between the two signals (including 

all frequency bands: Band-1 + Band-2 + Band-

3) will be slight. Fig. 11 indicates the WTC 

between Tmax and Pr values. Visual inspection 

showed apparent stable annual variability for 

both signals, in which the magnitude of the 

coherences are intensified in some years 

(extremely high localized correlation) and 

weakened to some extent in other years 

(relatively high localized correlation). In 

addition, the values of coherences in the 8-16-

month band are substantial (greater than 0.8) in 

all stations during the period and fulfill the 5% 

significance criterion. These suggest a strong 

inverse relationship between Tmax and Pr due to 

the annual cycle of solar radiation. Since the 

power of both signals at Band-2 is also 

considerable (Fig. 8: ~ 95% for Tmax and ~ 40-

50% for Pr), the impact of these common anti-

phase fluctuations will be substantial on the 

(global) correlation between these two signals. 

Moreover, the simultaneous intensifying and 

weakening of the localized correlations at the 

annual scale during the study period imply that 

the same forcing drives this pattern for all four 

stations. 

 

 
Fig. 10. Wavelet coherence (WTC) for the period 1979-2021, between the monthly sunspots and precipitation series for different stations: (a) 

Kermanshah, (b) Sanandaj, (c) Khorramabad (d) Hamedan. 
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Fig. 11. Wavelet coherence (WTC) for the period 1979-2021, between the monthly sunspots and maximum temperature series for different 

stations: (a) Kermanshah, (b) Sanandaj, (c) Khorramabad (d) Hamedan. 

 

In addition to significant annual co-variability, 

other high coherences are apparent at different 

periods (intra-annual, inter-annual, and decadal 

scales) in different time intervals (Fig. 12). 

Specifically, sporadic high coherences are 

evident in the intra-annual band with dominant 

anti-phase relationships for all stations. 

Furthermore, different significant inter-annual 

and decadal co-variabilities were found for all 

stations at specific bands. The main 

characteristic of these common fluctuations is 

their intermittency and the dominant anti-phase 

relationship. As is shown in Fig. 12, the main 

part of the common inter-annual fluctuations 

concentrates around the 24-to-32-month scale 

for Kermanshah and Sanandaj stations and 

around 24-to-64-month for Hamedan. 

Significant co-variability for the scale of 32-128 

months in the Tmax and SN signals is rare for 

Kermanshah, Sanandaj, Khorramabad, and also 

for the scale of 64-128 months for Hamedan. At 

the decadal scale at the bottom of the WTC 

plots, significant co-variability between Tmax 

and Pr is noticed mostly at Hamedan station and 

to some extent at Kermanshah and Sanandaj 

stations. The phase difference indicates that the 

maximum of the decadal component of Pr 

occurs 3-4 years before the maximum of the 

same one of Tmax.  

   

 
Fig. 12. Wavelet coherence (WTC) for the period 1979-2021, between the monthly maximum temperature and precipitation series for 

different stations: (a) Kermanshah, (b) Sanandaj, (c) Khorramabad (d) Hamedan. 
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The linkage between SN with Pr and Tmax, and 

also Tmax with Pr, is investigated in the whole 

extent of the western part of the country, in 

addition to the single stations. For this purpose, 

the Tmax and Pr monthly values were averaged 

over four stations to obtain the relevant time 

series for each quantity (Figs. 3-4a) and then 

analyzed with the SN (Fig. 2a) to find common 

features. Figure 13 presents the WTC plots and 

shows an apparent 128-month reoccurrence 

pattern with a broader band for SN-Tmax and a 

narrower band for Tmax-Pr. The phase difference 

between the SN and Pr at the 128-month period 

is ~ -135° (Fig. 13a), which shows the SN 

decadal fluctuation precedes the Pr by 3-4 years. 

Furthermore, the phase difference for SN-Tmax 

in the decadal band indicates that the SN signal 

is ahead by 6-7 years (Fig. 13b). For the Tmax-

Pr, the significant anti-phase co-variabilities are 

concentrated on the 2-8-month, 8-16-month, 

and 24-32-month periods (Fig. 13c). 

Furthermore, the influence of decadal 

significant common fluctuations (larger than 

128-month period) is detectable (bottom of the 

plot).     

 
3.4. Discussion 
 

As ivestigated in this paper, the variability of 

atmospheric data covers a broad range of 

temporal scales. Other than preferred scales of 

the variability in maximum temperature, 

precipitation, and sunspots, the spectrum of 

each variable provides insight into the dynamics 

of the Earth system as a whole (von der Heydt 

et al., 2021). In addition to the ’background 

spectrum’, preferred frequencies like the sharp 

or flat peaks can be identified, which are set by 

specific modes of internal or external climate 

variability. All three statistical methods we used 

in this study can be regarded as complementary 

methods, and these methods are quite beneficial 

for elucidating long- and short-term variability 

contained in the precipitation, temperature, and 

sunspots time series. Using PSD and CSP 

methods revealed the major components and 

their relative intensities. Hence, applying these 

methods resulted in the identification of several 

dominant quasi-periodic peaks and underlying 

spectra in the frequency domain. The robust 

shorter period of one year corresponds to 

seasonal variations in the precipitation and 

temperature, typical for the continental stations 

of the Northern Hemisphere (Borkovic and 

Bronic, 2021). These findings suggest that 

using a spectral method like CSP is an 

appropriate way to study different temporal 

scales of the climatic time series and to identify 

the main deterministic and stochastic 

components. Furthermore, the relative 

importance of each component in 

reconstructing the time series can be 

recognizable through CSP. Therefore, the 

results suggest that the statistical modeling and 

prediction of climatic time series can be 

conducted by dividing the variability of the 

complex time series into their main 

deterministic and stochastic components, taking 

into account the background noises. 

  

 
Fig. 13. Wavelet coherence (WTC) for the whole area during the period 1979-2021, (a) between the monthly sunspots and precipitation, (b) 
between the monthly sunspots and maximum temperature, (c) between the monthly maximum temperature and precipitation. 
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The relative impact of the 11-year solar cycle on 

the long-term variability of precipitation and 

temperature, which was quantified by CSP in 

this study, is also investigated by other scholars 

(Thomas et al., 2023; Neyestani et al., 2022; 

Ogurtsov et al., 2020; Laurenz et al., 2019; Sfîc 

et al., 2018) and similar results have been 

obtained. Thomas et al. (2023) used the wavelet 

transform to highlight the relationship between 

rainfall and sunspots over Kerala in India. The 

time series analysis showed common features at 

8-18 years with varying significance. Neyestani 

et al. (2022) carried out research concerning the 

relationship between large-scale circulations 

and precipitation and temperature over Iran 

using re-analysis gridded data. They found that 

the surface temperature and precipitation 

variations are strongly linked together over the 

whole area of Iran, in particular at annual cycle. 

Their results also indicated a piece of evidence 

regarding the impact of the 11-year solar cycle 

on precipitation and temperature over Iran, 

which are consistent with the results of the 

current study in individual stations. The 

correlation analysis at successive time lags 

measured the amount of linearity between each 

pair of time series and hence used to show 

generally possible relationships. The wavelet 

coherences showed the scale-dependent 

common variability of sunspots, temperature, 

and precipitation over the period of 1979–2021. 

Accordingly, these two methods are capable of 

indicating the effect of 11-year solar activity on 

precipitation and temperature as a global 

(independent of time scales) or local (dependent 

on time scale) measure, which are employed by 

other authors in this field of study (Zhang et al., 

2021; Laurenz et al., 2019). New analysis 

method like WTC aims to determine how 

fluctuation levels at each time scale are related. 

One interpretation of these results is that apart 

from phenomena directly attributable to an 

external forcing, such as the annual cycle in 

monthly atmospheric data, other variabilities, 

such as the effect of sunspots, have a very 

complex nature and can be considered as a part 

of the background signal (Lovejoy and 

Schertzer, 2013). The background signal 

originates from multifractal cascading 

processes such as those in turbulent flows. On 

the other hand, the revolution of the Earth 

around the Sun causes the annual forcing, and 

with the daily rotation, constitutes indubitably 

the most prominent spectral peak of most 

climatic variables. Compared with most typical 

time scales of climate variability that we 

considered here; the annual (seasonal) cycle is 

clearly on a rather short time scale. 

Nevertheless, it strongly interacts with many 

slower modes of variability; for example, inter-

annual phenomena such as the El Nino-

Southern Oscillation (ENSO) tend to be locked 

to the seasonal cycle (Rasmusson and 

Carpenter, 1982). Furthermore, it was indicated 

that the ENSO phenomenon is under the 

influence of solar activity during the 11-year 

solar cycle (Neyestani et al., 2022, Hassan et al., 

2016, Fu et al., 2012). 

Different statistical methods we employed in 

this study can somehow provide an increased 

contribution to unravel the complexity of the 

Sun–climate impact, especially regarding the 

stochastic components. Obviously, the direct 

impact of solar activity on the variability of 

climatic data is difficult to outline, due to the 

complex processes that occur in the Sun–Earth 

environment, taking into consideration the 

complexity of the climate system (Mares et al., 

2021). 
 

4. Conclusion 
 

4.1. Concluding remarks 
 

In this research, the variability of the 

precipitation, maximum temperature, and 

sunspots at different timescales from 2 to 143 

months was studied for 42 years in the western 

part of Iran, which is very vulnerable to climate 

change. An assessment was carried out to 

quantify the intensity of variabilities at intra-

annual, annual, and inter-annual plus decadal 

scales, represented by Band-1, Band-2, and 

Band-3, respectively. Our findings and 

conclusions can be summarized as follows:  
1. All the considered signals have some 

dominant scales of variability. Due to the 

limited length of data and the monthly 

sampling, the variability analysis was confined 

to the 2-143-month. The dominant cyclic and 

stochastic behaviors were found concerning the 

variability of the data. For instance, periodic 

and almost-periodic components with 

considerable power were identified in the SN, 

Tmax, and Pr by the PSD and CSP analysis, 

similar to the previous studies conducted by 

other scholars. 2. The lagged correlation 

analysis is a helpful method to distinguish the 

amount of linear relationship between two 

different time-dependent datasets. The Pearson 
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correlation coefficient was used at different 

time lags, from 0 to 150 months, to quantify any 

possible linkage between SN and the Tmax, and 

also Pr, taking into account all frequency 

components and the inter-annual plus decadal 

component of the time series. Some pieces of 

evidence regarding the impact of the solar cycle 

(with a time delay) on precipitation and 

maximum temperature were found in the 

western part of Iran (see the correlation 

coefficients above 95% confidence level in Fig. 

9b, c). However, the impact is not so powerful 

to have a large influence on the behavior of Tmax 

and Pr in this area. 3. Applying the wavelet 

coherence approach to the signals generally 

shows continuous significant common 

oscillations with consistent phase relationships 

for the SN-Pr and SN-Tmax in decadal 

periodicities. In addition, for the Tmax-Pr all the 

fluctuations in the 2-6-month, 8-16-month, 24-

32-month, and 128-143-month bands show 

intermittently or continuously significant 

coherences with a dominant anti-phase 

relationship throughout the mentioned scales 

and the study period. The decadal oscillation of 

Pr is somewhat more substantial than Tmax in 

association with the SN. The impact of the solar 

cycle led to detectable variation in the Pr signal, 

which was confirmed by the lagged correlation 

analysis. Overall, the findings obtained in this 

study provide further insight into the temporal 

variation of precipitation and temperature, 

which are the main effective elements in 

managing the water resources and identifying 

climate change in the west of Iran. Furthermore, 

the current study attempted to contribute to the 

issue of solar-terrestrial interaction on a 

regional scale. The insights we obtain by the 

variability analysis are crucial for 

understanding different interactions in the 

climate system, and the approach used in this 

study can also be applied in other geographical 

regions and for other climatic quantities. 
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