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1. Introduction 

       Gully erosion is a major form of soil 

degradation and an important environmental 

concern that can have devastating effects such 

as soil loss, habitat destruction, water pollution, 

and sediment deposition in water bodies (Amiri 

et al., 2019). Temporary or ephemeral gully is 

often formed in low-lying land at the junction of 

rivers. A temporary gully is usually located in 

the depth of the plow layer (20 cm) and its width 

is 30 to 50 cm. The gully is generally cut in the 

plow layer with a width and depth of more than 

50 cm (Liu et al., 2018). In order to reduce the 

negative effects of gullies and implement 

effective management programs, accurate 

mapping of gully erosion susceptibility is very 

 important (Gomez et al., 2009; Roy and Saha, 

2021). 

important (Gomez et al., 2009; Roy and Saha, 

2021). Statistical models based on different data 

have been successfully used to predict and 

prepare gully erosion sensitivity maps. These 

models can be divided into three groups: 

machine learning models, multi-criteria 

decision-making models, especially analytical 

hierarchy process (AHP) and categorized 

bivariate and multivariate statistical models 

(Garosi et al., 2018; Zabihi et al., 2018; 

Arabameri et al., 2019; Domazetovi et al., 2019; 

Lei et al., 2020; Soleimanpour et al., 2021; 

Mrad et al., 2024). Machine learning techniques 

have revolutionized gully erosion prediction by 

surpassing traditional statistical models through 

their ability to analyze large data sets, identify 

complex patterns, avoid human bias, and 

discover hidden relationships (Senanayake and 

Pradhan, 2022). 
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Gully erosion, a significant environmental issue, can lead to severe consequences 

like soil loss, habitat destruction, and water pollution. To mitigate its impact, 

accurate mapping of land sensitivity to gully erosion is crucial. Machine learning 

models offer a powerful approach to predict and map gully erosion susceptibility. 

This study focuses on the Mukhtaran basin in South Khorasan province, Iran. By 

employing various machine learning techniques, including GLM, GBM, CTA, 

ANN, SRE, FDA, MARS, RF, and MaxEnt, the researchers aimed to identify the 

most suitable model for predicting gully erosion. Twenty-two environmental 

factors were selected and analyzed, with a focus on physiographic, climatic, 

hydrological, soil, land surface/cover, and geological variables. The results 

showed that the random forest (RF) and ensemble (ESMs) models demonstrated 

the highest accuracy in predicting gully erosion susceptibility, with a TSS index 

of 0.97. Sensitivity analysis revealed that the digital elevation model, soil electrical 

conductivity, bare soil percentage, land unit components, geology, runoff 

coefficient, and maximum storage capacity were the most influential factors. The 

study emphasizes the potential of machine learning models in generating accurate 

gully erosion susceptibility maps. However, further research is needed to explore 

additional factors and improve data quality. By combining topographic/hydrologic 

indices with machine learning models, more precise estimates of gully paths can 

be obtained for use in process-based models. 
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their ability to analyze large data sets, identify 

complex patterns, avoid human bias, and 

discover hidden relationships (Senanayake and 

Pradhan, 2022). These algorithms continuously 

learn and improve accuracy, expertly handling 

complex changes and unpredictable scenarios, 

especially in data-poor environments (Luo et 

al., 2021). In addition, machine learning-based 

models have an advantage in evaluating the 

impact of runoff caused by climate change on 

gully erosion compared to alternative models 

(Senanayake and Pradhan, 2022). Choosing the 

right machine learning model to create an 

accurate gully erosion susceptibility map 

(GESM) is very important because the model's 

performance can show different accuracy and 

efficiency in various environmental conditions 

(Roy and Saha, 2021). 

The RF model or random forest as a powerful 

machine learning algorithm for GESM offers 

several advantages, including high accuracy, 

the ability to manage large input variables, to 

capture nonlinear relationships, to identify 

important variables, and to manage missing 

data well (Setargie et al., 2023).  

This method efficiently handles large amounts 

of data, handles sparse data and samples the 

weight coefficients, and provides accurate 

estimations using advanced tree learning 

algorithms and weighted quantum design 

techniques (Gumus and Kiran, 2017). 

Wise management of gully erosion in the 

watershed is a critical strategy for successful 

gully erosion control (Gayen et al., 2019; Roy 

and Saha, 2021). This approach addresses an 

important research gap in the field of gully 

erosion studies (Mahala 2020; Majhi et al., 

2021). To develop effective strategies for 

preventing gully erosion, a comprehensive 

GESM to analysis the damage caused by gully 

erosion is necessary. Rainfall is an important 

factor in causing gully erosion. Soil saturation 

caused by rainfall and moisture infiltration 

causes undercutting of the head and wall of the 

ditch and its collapse with the lowering of the 

bottom of the ditch (Anderson et al., 2021). In 

Tennessee, USA, rainfall duration and 

accumulation were more critical than rainfall 

intensity in the formation and development of 

gully erosion (Luffman et al., 2015). The linear 

retreat rate of the gully head varies between 

0.01 and 135 meters per year on a global scale 

(Vanmaercke et al., 2016). 

Revival of vegetation is an important measure 

to reduce the intensity of gully erosion. Plant 

stems in the bed can reduce gully growth by 

increasing infiltration, reducing runoff, and 

reducing flow velocity (Bastola et al., 2018; Li 

and Pan, 2018). In general, soil and water loss 

due to gully erosion decreases with increasing 

vegetation (Gao et al., 2009; Zhao et al., 2013). 

And when the vegetation reaches the maximum 

coverage, erosion is no longer obvious (Zhang 

et al., 2010). In general, one of the most 

important and influential factors in developing 

gully erosion is soil type and rainfall 

magnitude, and the most important controlling 

factor for this type of erosion is the increase in 

soil surface coverage. 

The main purpose of this study is to develop an 

accurate gully erosion susceptibility map of the 

Mukhtaran basin using machine learning 

techniques, especially GLM, GBM, CTA, 

ANN, SRE, FDA, MARS, RF, and MaxEnt 

models with determining and prioritizing the 

best model for preparing a gully erosion map. 

The findings of this study provide valuable 

spatial guidance for managing gully erosion 

and help to achieve sustainable development 

goals. 

 

2. Material and methods 

2.1. Case Study 

       Mukhtaran watershed is located on the 

southern side of the Bagheran highlands in 

South Khorasan province with an area of 2421 

km2. Its geographical location is between 59° 

02′ 32″ to 59° 08′ 59″ E longitude and 36° 25′ 

18″ to 36° 31′ 43″ N latitude (Fig. 1). This area 

is further east-west extension (along the plain) 

than its north and south sides. The total surface 

of this region, which includes lands with 

diverse morphology, contains mountainous and 

hilly lands, vast plains, as well as desert lands 

that lack any vegetation cover. The region's 

climate according to the modified Dumarten 

method is cold and dry in low-altitude plains 

and mountains and higher areas (above 2100 m 

of sea level) are dry and cold. The annual 

rainfall of Mukhtaran range varies between 150 

mm in low places and 220 mm in high places. 

The average annual temperature is 14.3 °C, the 

average annual minimum temperature is 5.6 °C, 

and the average annual maximum temperature 

is 22.7 °C. 
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2.2. Data used 

First, in this stage, various basic maps including 

drainage network, slope, geology, 

geomorphology, soil series, and land use were 

studied and the map of specific work units was 

prepared. Then with the interpretation of 

existing aerial photos (Scale: 1:50000), the 

range of gully erosion forms on the map was 

separated. The field survey also helped us to 

collect 61 points of gully erosion presence by 

GPS (Fig. 1). 

 

Fig. 1. Geographical location of the studied area and distribution of gully erosion sampling points. 

2.3. Input environmental variables 

By reviewing the studies and considering the 

nature of gully erosion with attention to the 

basic information sources available in the 

region, 25 important and effective variables in 

gully erosion formation were identified, and the 

related layers were prepared from different 

sources. Using the available information, 25 

environmental variables including 5 

topographic variables, 2 climatic variables, 4 

hydrological variables, 8 soil variables, 4 land 

surface cover variables, and 2 geological 

variables were considered for model 

development. In this study, physiographic and 

geomorphological variables were prepared 

using topographic maps with a scale of 1:25000 

of the country's mapping organization. Climatic 

variables were obtained from weather stations 

of the National Meteorological Organization. 

Soil and geological variables were procured 

with a scale of 1:50,000 based on a field survey 

and 1:100,000 base maps of the Geological 

Organization of Iran. Since all the input 

information layers of the model must have the 

same coordinate system and scale, the 

preparation of the information layers and the 

matching of the layers with the pixel size of 20 

x 20 meters was carried out in Idrisi Selva 

software. Using Pearson's correlation 

coefficient, the variables that have a correlation 

coefficient of 0.8 and greater with each other 

were selected and eliminated to prevent the 

duplication of information (Damaneh et al., 

2022; Momeni Damaneh et al., 2023a) (Fig. 2). 

Finally, to prepare a map of erosion forms, 22 

environmental parameters were selected as 

predictive variables (Fig. 2-a, b) in Grid format 

along with the presence points of the dominant 

form of gully erosion for modeling in R 

software package using the GLM, GBM, CTA, 

ANN, SRE, FDA, MARS, RF, and MaxEnt 

models. The relationships between gully 

erosion and environmental factors were 

identified. Assessing the validity of the models 

was performed using the KAPPA, TSS, and 

ROC measures which are prominent and widely 

used indicators for validation analysis (Momeni 

Damaneh et al., 2023b). Table 1 shows the list 

of influential variables in the modeling process.
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Table 1. List of influential variables in gully erosion modeling. 

Category Variable name Abbreviation Unit 

Climate 
Annual precipitation Precipitation mm 

Precipitation 24 hour Precipitation 24 hour mm 

Hydrological 

Flooding Flooding Unitless 

Curve number CN Unitless 

Drainage density Densitywat (Km/Km2) 

Maximum storage capacity Coefficien mm 

Land surface cover 

Litter Dryplant % 

Crown cover Crowncover % 

Stones pebbles Stonespebb % 

Bareground Bareground % 

Soil science 

P
h

y
si

ca
l 

ch
ar

ac
te

ri
st

ic
s Sand Sand % 

Silt Silt % 

Clay Clay % 

Hydrologic soil 

group 
Soilhidro Dimensionless 

Landsource Landsurc Dimensionless 

C
h
em

ic
al

 

p
ro

p
er

ti
es

 Soil pH pH pH * 10 

Soil EC EC dsm/m 

T.N. V T.N. V % 

Geology 
Geology                                                       Dimensionless 

Permeability Permeabili Dimensionless 

Physiography 

DEM DEM m 

Topographic wetness index TWI Dimensionless 

Stream power index SPI Dimensionless 

Aspect Aspect Dimensionless 

Slope Slope % 

2.4. Modeling 

In this work, ten algorithms in the Biomed 

package within the R environment (Thuiller et 

al., 2009) were used to model gully erosion. 

The same software package was used to 

generate non-attendance points (Table 2), as 

well. In the modeling process, 70% of the 

dominant erosion position points were used to 

generate the models and 30% of the presence 

points were used to evaluate the performance of 

the applied models. Moreover, to increase the 

accuracy of modeling and achieve algorithm 

convergence, the number of repetitions was 

considered at 5. 

Table 2. The list of models employed for gully erosion modeling. 

Name Abbreviation 

Generalized Liner Model GLM 

Generalized Boosting Method GBM 

Classification Tree Analysis CTA 

Artificial Neural Network ANN 

Surface Range Envelope SRE 

Flexible Denotative Analysis FDA 

Multivariate Adaptive Regression Spline MARS 

Random Forest RF 

Techniques and their ensembles ESMs 

Maximum entropy model MaxEnt 

 
2.5. Model evaluation 

Accuracy assessment of the models was 

performed using three statistical coefficients. 

The first method is Receiver Operating 

Characteristic (ROC) which is a graphical 

method that evaluates the ability of a model to 

predict the presence and absence of species 

based on related environmental variables 

(Fielding and Bell, 1997). The second method 

is to calculate the amount of TSS (Eq. 1), that 

is used for the models with the presence and 

absence of ground truth points (Momeni 

Damaneh et al., 2023a). Research shows that 

the ROC has a high correlation with the TSS; 

therefore, in the studies whose results are in the 

form of presence and absence maps, TSS can be 

a suitable alternative to ROC (Walther et al., 

2002).
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Cohen's kappa is the agreement between two 

assessors, each of whom evaluates N items in C 

mutually exclusive classes (Eq. 2) (Smeeton, 

1985; Galton, 1892).   

𝑇𝑆𝑆 =  𝑇𝑃𝑅  +  𝑇𝑁𝑅  − 1                   (1) 

𝐾𝑎𝑝𝑝𝑎 =
𝑃𝐴𝑂−𝑃𝐴𝐸

1−𝑃𝐴𝐸
                                  (2) 

 

The metric values of ROC, Kappa, and TSS less 

than 0.5 indicate inappropriate modeling 

performance, between 0.5 and 0.6 show very 

poor fit, between 0.6 and 0.7 confirm a poor fit, 

between 0.7 and 0.8 indicate moderate fit, 

between 0.8 and 0.9 designate a good fit and the 

range 0.9-1 indicates a high (desirable) fit of 

modeling (Swets, 1988; Yi et al., 2016; 

Momeni Damaneh et al., 2023b). To achieve a 

geographical view of the areas that have 

suitable climatic and environmental conditions 

for gully erosion, the optimal maps were 

depicted in discrete and continuous forms (Fig. 

4). The values of gully erosion susceptibility 

obtained by the habitat suitability models were 

expressed from 0 to 1000. Zero is the lowest 

probability and 1000 is the highest probability 

for gully erosion incidence. To better 

understand the distribution of gully erosion in 

the study watershed, the probability map was 

classified into four classes including 

unfavorable habitats between 0 and 250, 

habitats with low desirability between 250 and 

500, habitats with medium desirability between 

500 and 750, and desirable habitats between 

750 and 1000 (Table 3). The reclassification 

process was performed within the Arc GIS 10.5 

environment utilizing the Natural Breaks 

method (Jenks algorithm) (Momeni Damaneh 

et al., 2022). 

 

3. Results and discussion 

          The Pearson's correlation test for the 

predictive variables is shown in Fig. 2. 

Negative correlation is depicted with red color 

and positive correlation with blue color. 

Furthermore, the numerical value of correlation 

is shown inside each cell. According to Fig. 3a-

b, 22 environmental variables that were less 

than 80% correlated with each other (to prevent 

the replication of input information) were 

chosen to be used in the modeling of gully 

erosion-prone areas. 
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 Fig. 2. Pearson correlation test for predictive variables with 80% correlation. Negative correlations are shown in red and positive 

correlations are shown in blue, (A) Correlation of total data, (B) Correlation of the data used in modeling. 

3.1. Efficiency evaluation of the employed 

models 

The KAPPA and TSS index values with 

ROC which are the prominent and widely 

used indicators for determining and 

identifying potential areas are illustrated in 

Fig. 4. Based on the TSS metric, the best 

modeling for gully erosion is obtained 

using the random forest (RF) and ensemble 

(ESMs) models with an accuracy of 0.97. 

Although most of the models are 

implemented at a high level of efficiency, 

in the end, random forest (RF) and 

ensemble (ESMs) models were selected 

due to the highest accuracy. Therefore, the 

selected models were used as a basis for 

further calculations (Fig. 4). Marker et al. 

(2011) compared the susceptibility maps 

(inter-rill and gully erosion) for the Orme 

River basin, Italy. The comparison of 

models using AUC, Kappa index, and R2 

showed that although both TN and RF 

models provided good accuracies, however, 

TN model established higher efficiency 

than the RF model. The TN model showed 

a large difference between training and 

validation accuracies due to the overfitting  
 

problem. In contrast, the RF model was 

more stable in the training and validation 

phases. These results were consistent with 

the findings of our research, as well. Other 

researchers also confirm the results of this 

study which include the works by Kuhnert 

et al. (2010), Shruthi et al. (2014), Rahmati 

et al. (2017), Amiri et al. (2019), Garosi et 

al. (2019), Gayen et al. (2019), and 

Pourghasemi et al. (2020). The excellent 

forecasting performance of the RF model 

for gully erosion mapping can be 

established based on the following 

evidence: 1- It can use all various predictors 

without dropping any parameter during the 

modeling process. 2- It can work with very 

large data sets. 3- Since the RF model can 

generate multiple predictions of any 

phenomenon using a combination of trees, 

it can efficiently find non-linear 

relationships between predictors and 

predicted variables. 4- It combines different 

types of data in the analysis to overcome 

problems related to the non-distribution of 

assumptions about the input data. 5- It 

shows less sensitivity to noise in the input 

data (Kantardzic, 2011; Zhang et al., 2018).
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Fig. 3. (a) Variables selected for gully erosion modeling.
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Fig. 3. (b) Variables selected for gully erosion modeling.
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Fig. 4. Assessment of accuracy in the modeling of gully erosion-prone areas. 

3.2. Sensitivity analysis 

The percentage of the relative importance 

of environmental variables in mapping 

gully erosion shows that the most important 

environmental factors include digital 

elevation model (DEM), electrical 

conductivity (EC) of the soil, the 

percentage of bare soil (uncovered soil), 

land unit components, geology, runoff 

coefficient and the maximum holding 

capacity of soil that respectively had the 

greatest effect on the geographical 

distribution of gully erosion (Fig. 6). In 

sum, the relative importance of all the 

environmental factors of gully erosion in 

the studied area showed that physiographic 

factors, soil, and geological factors are of 

significant importance in the geographical 

distribution of gully erosion in Mukhtaran 

watershed (Fig. 5). The findings are also 

supported thru the research work by 

Mohebzadeh et al. (2022). 

 
Fig. 5. The percentage of the relative importance of environmental parameters affecting the intensity of all types of gully erosion.
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Finally, the area and the areal percentage of 

gully erosion classes of the Mukhtaran 

watershed based on the ensemble (ESMs) 

and random forest (RF) models are shown 

in Table 3 and Fig. 6. 

Table 3. The area and the frequency of gully erosion extents in the Mukhtaran watershed. 

Erosion severity class 
Model ESMs Model RF 

Area (km2) Area (%) Area (km2) Area (%) 

Low 2408.03 99.43 2415.55 99.74 

Medium 5.64 0.23 1.05 0.04 

high 3.86 0.16 0.45 0.02 

Very high 4.20 0.17 4.67 0.19 
 

 
Fig. 6. Land susceptibility maps to gully erosion. 

4. Conclusion 

      Gully erosion is an important problem 

that has a great impact on agricultural and 

economic activities with the spread of land 

degradation. Machine learning techniques 

in developing gully erosion susceptibility 

maps are considered valuable tools for 

regional managers by identifying the 

locations where gullies occur, as well as the 

locations prone to gully initiation. They are 

also effectively employed to assess the 

environmental impacts of gullies, to plan 

gully erosion controls, and to mitigate the 

gullies’ negative impacts. This work 

examines the efficiencies of machine 

learning models for the preparation of gully 

erosion susceptibility maps in the 

Mukhtaran watershed, Iran. The modeling 

process was carried out in four main steps: 

(1) Preparing a distribution map of existing 

gullies, (2) Extracting factors influencing 

gully formation, (3) Multi-linear 

evaluation, and (4) Model development and 

performance analysis. In this study, ten 

machine learning models were employed to 

map the gully erosion susceptibility. The 

two methods, i.e., RF and ESMs models 

showed the best performance for preparing 

the gully erosion map. In validation 

analysis, two types of performance 

measures were utilized, i.e., threshold-

dependent methods such as the kappa 

coefficient and threshold-independent 

methods like ROC and TSS.
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As confirmed in this research, most studies 

also have shown that primary topographical 

features, e.g., altitude, slope, geological and 

soil characteristics such as land/vegetation 

unit components are among the factors that 

especially affect the quality of erosion 

modeling (Mohebzadeh et al., 2022). 

Despite the promising results in machine 

learning-based modeling for the 

preparation of gully erosion susceptibility 

maps, some suggestions are presented to 

improve the quality of prediction. First, 

further studies are recommended to test 

different factors, e.g., topography and 

hydrologic features in different geographic 

locations that may affect the proficiency of 

machine learning models. Second, strong 

data mining models should be used to 

improve the quality of the data set based on 

a comprehensive analysis of the 

relationship between the occurrence of 

gullies and the causative factors. Third, a 

set of models should be executed to 

combine the ability of models to increase 

accuracy and reduce forecast uncertainty. 

Among the reviewed articles, it can be 

revealed that, in addition to preparing a map 

of areas prone to permanent gully erosion, 

some studies also seek to use machine 

learning techniques to prepare a rill erosion 

map (Marker et al., 2011; Angileri et al., 

2016), and ephemeral gully map (Garosi et 

al., 2019).  

Although these maps can be utilized as a 

valuable tool to detect degraded lands by 

gully erosion, the generated maps cannot 

reliably represent the gully paths that are 

the main input of some process-based 

models. Therefore, by combining 

topographical indices and machine learning 

models, a more accurate estimate of the 

gully path can be provided, which can be 

used in process-based models to estimate 

soil loss from gullies.  
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