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1. Introduction 

 

Adequate knowledge of river flow plays a 

significant role in hydrology, for proper planning 

and management of water resources, and 

environment. River flow is a dynamic, nonlinear, 

complex system in nature and often influenced 

by the physical characteristics of the watershed. 

Many nonlinear techniques include chaos theory, 

artificial intelligence systems, and catastrophe 

theory are used for the river flow modeling (see 

for details, Kumar and Foufoula-Georgiou 

(1997), ASCE Task Committee (2000a, 2000b), 

Sivakumar (2000), Labat et al. (2005), Ghorbani 

et al. (2010), Sivakumar and Berndtsson (2010), 

and Khatibi et al. (2012)). The fundamental 

concept in chaos theory is that complex and 

random-looking behaviors are not necessarily the 

result of actual random systems but can also be 

from simple nonlinear deterministic systems 

with sensitive dependence on initial conditions 

(Lorenz, 1963; Wilks, 1991). 

Chaos theory has found specific applications in 

investigating the presence of chaotic behavior 

(low or high dimensional deterministic) in the 

river flow and related processes because such 

complex systems can be represented in a 

simplified form through chaotic approach. Also 

this approach determines the complexity level 

of a system that provides the parameters and 

required information for subsequent predictive 

analyses. (Jayawardena and Lai, 1994; 

Porporato and Ridolfi, 1997; Liu et al. (1998); 

Krasovskaia et al. (1999); Sivakumar et al. 

(2001); Ghorbani et al. (2010), Lisi and Villi 

(2001); Tang and Hu (2010); Xu et al. (2013); 

Li et al. (2013)). The research by Ng et al. 

(2007) focused on the application of chaotic 

analytical techniques to daily stream flow data 

of the Saugeen River in Ontario, Canada and 

hydrologic series comprised of outliers. 

Different techniques and concepts of chaotic 

theory were adopted to enhance the 

understanding of the phenomena of outliers. 
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This paper illustrated the use of the 

autocorrelation functions, mutual information, 

power spectrum analysis, phase space 

reconstruction, correlation dimension, 

surrogate tests, and Hurst coefficients for the 

analysis of chaotic systems. Based on the 

results of analyses, the analyzed series 

exhibited random-like fluctuations. The 

existence of outliers was found to increase the 

complexity of the analyzed series. The 

differentiation of a highly complex system 

from a random process, and the impact of 

outliers on the complexity of a system were 

quantitatively as well as visually presented 

from a chaotic perspective. Khatibi et al. 

(2012) investigated the existence of chaotic 

behavior in the river stage and discharge time 

series observed at the Sogutluhan hydrometric 

station, Turkey. Five nonlinear dynamic 

methods were employed: (1) phase space 

reconstruction; (2) false nearest neighbor 

(FNN) algorithm; (3) correlation dimension 

method; (4) Lyapunov exponent method; and 

(5) local approximation method. As the 

discharge data used in this study are produced 

by rating directly gauged stage time series, it 

becomes feasible to investigate any 

interference triggered by chaotic signals with 

the rating. The results indicated the existence 

of low-dimensional chaos in the two time 

series. They also suggested that the rating of 

the stage time series to obtain the discharge 

time series amplified significantly the 

fluctuations in the latter in the presence of 

chaotic signals. Kędra (2014) used several 

independent methods, techniques and tools for 

studying daily discharge from two selected 

gauging stations of the mountain river in 

southern Poland, the Raba River to determine 

the underlying dynamics of river flow. The 

outcomes indicated that the investigated 

discharge dynamics is not random but 

deterministic. Moreover, the results completely 

confirm the nonlinear deterministic chaotic 

nature of the studied process. All mentioned 

studies demonstrated the chaotic behavior of 

river flow at the certain stations on the river. In 

the case of a river network, the author is not 

aware of any attempts to study the nature of 

the river flow upstream to downstream. So the 

main aim of this study is to detect the 

possibility of presence of chaotic behavior in 

the consecutive gauge stations of seven basins 

from different areas of the world. Different 

estimators are adopted to capture the presence 

of deterministic and chaotic dynamics in all 

gauge stations, namely average mutual 

information, false nearest neighbors, 

correlation dimension. The phase space 

corresponding to the underlying dynamical 

system is reconstructed by means of optimal 

delay time and embedding dimension, obtained 

from first local minimum of the average 

mutual information and from the false nearest 

neighbors techniques, respectively. The main 

signatures of chaotic dynamics will be 

investigated by means of the correlation 

dimension. 

 

2. Material and Methods 

 
2.1. Methodology 

 

Chaos theory or nonlinear time series 

analysis involves a host of methods, essentially 

based on the phase space reconstruction of the 

process, from scalar or multivariate 

measurements of its physical observables 

(Manlio et al., 2013). 

 
2.2. Reconstruction of phase space 

 

The first step in the process of chaos theory is 

reconstructing the dynamics in phase space. 

The concept of phase-space is a powerful tool 

for characterizing dynamic system, because 

with a model and a set of appropriate variables, 

dynamics can represent a real-world system as 

the geometry of a single moving point 

(Ghorbani et al., 2012). A method for 

reconstructing phase-space from an observed 

time series has been presented by Takens 

(1981). Using a single variable Xi (i=1, 2, ... , 

N) the phase space (multi-dimensional) can be 

reconstructed using the method of delays 

(Takens, 1981) as following:  

                                                                                                              

  )1(2 ,...,,,  mjjjjj XXXXY                      (1) 

 

Where  ;  is 

delay time; m is the dimension of the Yj or 

embedding dimension and  is sampling time. 

If the dynamics of the system can be reduced 

to a set of deterministic laws, the trajectories of 

the system converge towards the subset of the 

phase space, called the attractor (Domenico et 

al., 2012).  

The time delay   can be defined by the 

average mutual information method (Fraser 
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and Swinney, 1986). This method defines how 

the measurements X(t) at time t are connected 

in an information theoretic fashion to 

measurements X(t+ ) at time  

(Abarbanel, 1996). The Average Mutual 

Information (AMI) is defined as:  
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Where i is total number of samples. P(Xi) and 

P(Xi+ ) are individual probabilities for the 

measurements of Xi and Xi+ .P(Xi, Xi+ ) are 

the joint probability density for measurements 

P(Xi) and P(Xi+ ). The appropriate time delay 

  is defined as the first minimum of the 

average mutual information I( )(Ghorbani et 

al., 2012). 

 
2.3. Correlation dimension  
 

Correlation dimension method is one of the 

most efficient methods to determine the 

presence of chaos (Jani et al., 2013). This 

method is used as a fractal dimension 

quantifier and is based on the correlation 

integral (Grassberger & Procaccia, 1983). 

For an m-dimensional phase space the 

correlation function Cm(r) is given by Theiler 

(1986) as: 
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where H is the Heaviside step function, with 

1)( uH  for 0u , and 0)( uH  for 

0u , where ji YYru  , N  is the 

number of points on the reconstructed 

attractor, r  is the radius of the sphere centered 

on 
iY  or jY  (Jani et al., 2013). If the time 

series is characterized by an attractor, then for 

positive values of r  the correlation function 

)(rCm
 is related to the radius r . For stochastic 

time series 



Cm(r) r
m

 holds, whereas for 

chaotic time series the correlation function 

scales with r  as: 
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Where D2, called correlation exponent. The 

correlation exponent is defined by: 

                                                                                                                               



D2  lim
r0

lnCm (r)

lnr
                                             (5) 

And can reliably be estimated as the slope in 

the 



lnCm (r)  vs. )ln( r  plot. The slope can be 

computed by the least-squares fit of a straight 

line (i.e. scaling region) over a length scales of 

r. According to Grassberger-Procassia 

algorithm (1983), in case of deterministic data 

set the plot of ‘m’ versus ‘D2’ should be a 

straight line parallel to embedding dimension, 

in case of stochastic data set, it should be 

straight line sloping 45 degrees to x and y axis. 

For a chaotic system, the correlation exponent 

initially increases but finally saturates after an 

especial embedding dimension. The saturation 

value of the correlation exponent is defined as 

the correlation dimension. If the value of 

correlation dimension is relatively small and 

fractal, the system can be considered as low-

dimensional deterministic chaotic dynamic. 

Sivakumar and Singh (2012) classify systems 

with correlation dimension to the four groups 

of low, medium, high-dimensional and 

unidentifiable. The associated dimensionalities 

are as follows: (1) low-dimensional, with d ≤ 

3.0; (2) medium-dimensional, with 3.0<d ≤ 

6.0; (3) high-dimensional, with d >6.0; and (4) 

unidentifiable. 

 
2.4. River flow data  

  

In this study, historical time series at the five 

basins from different regions of the world were 

used. Table 1 presents detailed spatial and 

temporal information about these basins. The 

statistical parameters corresponding to each 

time series are given in Table 2, while Figure 

1(a)-(g) shows the observed river flow time 

series variations in the selected stations versus 

time. 
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Table 1. Spatial and temporal detail of the case studies 

 

Table 2. Statistics of the river flow time series for the case studies considered 
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Fig. 1. River flow time series at the stations located in basin outlets: a) 31045 in the AjiChai basin; b) 19053 in the BalikhliChai basin; c) 

1501 in the Kizilirmak basin; d) 10038000 in the bear basin; e) 11477000 in the Eel basin 

 

3. Results and discussion 

 

To determine the chaotic dynamics for each 

of the stations, all of the river flow time series 

are used for phase-space reconstruction. Fig. 

2(a)–(g) shows the phase-space reconstruction 

of time series at stations 31045, 19053, 21425, 

17035, 1535, 38000 and 7000 respectively. 

The plots show the projection of the attractor 

on the plane with delay time equal 1. The 

delay time ( ) is estimated by using the 

average mutual information (AMI) method. 

The first minimum in the mutual information 

function can be considered as the optimal 

delay time (Regonda et al., 2004). The mutual 

information function of the stations are plotted 

and shown in Figure 3. Hence, the optimal 

delay time is chosen as 3, 4, 4, 8, 7, 6 and 4 for 

31045, 19053, 21425, 17035, 1535, 10038000 

and 11477000 stations, respectively (table 3). 

The initial exponential decay of mutual 

information functions indicates that the river 

flow series may be of chaotic nature (Li et al., 

2013). After determining the delay time values, 

the correlation integrals were computed by the 

Grassberger-Procaccia algorithm for different 

embedding dimensions (m). Figure 4 shows 

the relationship between the correlation 

function, C(r), and the radius r (i.e. logC(r) 

versus log r) for embedding dimensions, 

different value m. The relationship between the 

correlation exponent values (D2) and the 

embedding dimension values m is shown in 

Figure 5. 
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Fig. 2. Average mutual information function and its relative change with lag time at the stations that located in outlet basin: a) 31045 in the 

Ajichai basin; b) 19053 in the Balikhlichai basin; e) 1501 in the Kizilirmak basin; f) 10038000 in the bear basin; g) 11477000 in the Eel 

basin 
 

 

Fig. 3. Percentage of false nearest neighbor of the monthly river flow time series in embedding dimension at the stations: a) 31005 in the 

Ajichai basin; b) 19053 in the Balikhlichai basin; e) 1501 in the Kizilirmak basin; f) 10038000 in the bear basin; g) 11477000 in the Eel 

basin 
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Fig. 4. Log C(r) versus log (r) plots for monthly river flow data: a) 31045 in the Ajichai basin; b) 19053 in the Balikhlichai basin; c) 21425 in 

the Beheshabad basin; d) 17035 in the Taleghan basin; e) 1501 in the Kizilirmak basin; f) 10038000 in the Bear basin; g) 11477000 in the 

Eel basin 
 

 
Fig. 5. Relationship between embedding dimension and correlation exponent for different station in: a) Ajichai basin; b) Balikhlichai basin; 

g) Kizilirmak basin; h) Bear basin; i) Eel basin 
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4. Conclusion 

 
4.1. Conclusions and possibility for future study 

 

Correlation dimension (D2) in all of 

monthly runoff time series is a positive value 

and limited there for all of them are chaotic. 

For delay times and embedding dimension not 

seen relationship between them values and 

position of the station in basins. It seems that 

they do not significantly increase or decrease 

but in all of basin correlation dimension value 

increase from upstream to downstream. The 

rate of increase depends on the conditions of 

each basin such as changes in slope, land use, 

soil and climatic conditions. This study is 

among the first investigation it is clear that we 

need more studies to reach a general 

conclusion on this point. In homogeneous 

basin changes of D2 is less. Obtain a relation 

between correlation dimension and position of 

gauge station, Area or other physical 

characteristics of basin is important because 

D2 expressed as the number of relevant 

parameters and can determined type time series 

in terms of complexity.  
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