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1. Introduction 

          Landscape structure pertains to the 

genesis and evolution of ecosystem patterns, as 

well as the ramifications of pattern-process 

relationships at the population, community, and 

ecosystem levels. It is a critical aspect of 

environmental characteristics, essential for the 

maintenance of ecosystem health and 

biodiversity conservation, and provides insights 

that are crucial for advancing sustainable 

development (Urban, 2006). Landscape metrics 

have been extensively utilized as pivotal 

indicators in the investigation of planning and 

sustainable development. These metrics 

quantify the composition and configuration of 

ecosystems across a landscape, including such 

variables as patch size, shape, nearest-neighbor 

distance, and proximity index. 

ecosystems across a landscape, including such 

variables as patch size, shape, nearest-neighbor 

distance, and proximity index. This enables 

quantitative comparisons between different 

landscapes or within a single landscape over 

time. When spatial information from landscapes 

is derived from remote sensing data, pattern 

analysis can be conducted by considering each 

landscape unit (e.g., land-use/land cover type) 

as part of a discrete patch mosaic. This approach 

can provide useful information about habitat 

fragmentation and its changes (Liu & Yang, 

2015; Kumar et al., 2018; Qi et al., 2018; El 

Jeitany et al., 2024). 

Sustainable Earth Trends 

Land use change represents a critical challenge, potentially altering the landscape 

pattern. This study aims to evaluate land-use changes in the Chalus watershed in 

northern Iran and analyze its landscape patterns from 1982 to 2022. Land-use 

maps were generated using Landsat 3, 5, 7, and 8 imagery within the Google Earth 

Engine platform, and the changes were assessed with the Land Change Modeler 

(LCM) in TerrSet. Key landscape metrics, including patch density (PD), number 

of patches (NP), largest patch index (LPI), landscape shape index (LSI), edge 

density (ED), and patch cohesion index (PCI), were measured at the landscape 

scale (entire watershed) using Fragstats. The findings revealed that the rangeland, 

forest, agricultural land, built-up areas, and water bodies experienced changes of 

+23736, -25124, +274, +1016, and +99 ha, respectively, from 1982 to 2022. The 

results indicate that significant changes occurred across the watershed landscape 

regarding patch number, density, shape, and size, demonstrating substantial 

habitat fragmentation over this period. The study findings demonstrate that 

development trends over the past four decades have led to increases in land-use 

change within the region, which in turn has perpetuated landscape fragmentation 

and a reduction in natural habitats. This study identified the expansion of built-up 

areas and agricultural activities as significant contributors to the intensification of 

habitat fragmentation. Consequently, strategic measurements and planning are 

essential to prevent further fragmentation and degradation of the landscape. 
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The assessment and classification of landscape 

structure for ecological purposes necessitates 

the mapping of land use/land cover types and 

their changes (Laforza et al., 2010). Land use 

changes have ecological consequences, 

including carbon sequestration, runoff, soil 

erosion, and landscape habitat loss. Land 

use/land cover is essential for landscape 

structure and indirectly affects ecosystem 

sustainability. Information on land use/land 

cover obtained from remote sensing data and 

other qualitative assessment data can serve as a 

valuable tool for assessing human impacts on 

landscapes and, consequently, on ecosystem 

sustainability (Burkhard et al., 2009). 

Land-use change is a process through which 

human activities transform natural landscapes, 

specifically how land is utilized, often 

emphasizing its functional role in economic 

activities. It is frequently the case that land-use 

changes are nonlinear, with the potential to 

introduce feedback mechanisms within 

ecosystems. This can result in a strain on living 

conditions and expose communities to 

vulnerabilities. Therefore, it is essential to 

evaluate land-use change trajectories and 

project possible future scenarios under specific 

assumptions. This is a fundamental aspect of 

ensuring landscape sustainability (Paul and 

Rashid, 2017; Nehzak et al., 2022). 

A variety of models have been developed for 

the assessment and classification of land use, 

which can be grouped into six categories: 

cellular automata (CA), statistical analyses, 

Markov chains, artificial neural networks 

(ANN), economic models, and agent-based 

systems. CA and agent-based systems excel at 

spatial dynamics and interactions. Statistical 

analyses provide simpler insights into 

relationships. Markov Chains focus on 

probabilistic transitions effectively, while 

ANNs have been shown to utilize large datasets 

for the recognition of complex patterns. 

Economic models are key to understanding the 

financial aspects that drive land use change 

(Guan et al., 2011; Basse et al., 2014). The 

implementation and execution of these models 

necessitate the utilization of remote sensing 

products, including Landsat, Sentinel, and 

MODIS imagery (USGS, 2020). 

Land use is a significant factor in ecological 

processes and interactions, affecting climate 

characteristics, biodiversity, water resources, 

and soil. However, changes in land use have 

emerged as a significant environmental issue, 

driven by population growth, economic 

development, and social needs. When land use 

changes are made without due consideration of 

scientific principles and environmental 

concerns, significant environmental problems 

can result. For instance, deforestation results in 

elevated greenhouse gas emissions, which, over 

time, contribute to climate change. Similarly, 

agricultural activities, urban sprawl, and road 

construction result in soil degradation, erosion, 

and increased environmental pollution. 

Therefore, studying and understanding land use 

conversion processes provides valuable insight 

into the environmental conditions of a region 

and facilitates the implementation of 

appropriate planning and management 

strategies (Liu and Yang, 2015; Sun and Zhou, 

2016; Boongaling et al., 2018; Mulatu et al., 

2024). 

The Chalus River watershed constitutes a 

portion of the larger Chalus watershed, which 

has been subjected to the effects of 

developmental trends and land-use conversion 

in recent decades. Kheybari et al. (2017) 

acknowledged a decrease in the extent of 

forests in the Chalus watershed from 1987 to 

2015. The extensive alterations in land use in 

this region have resulted in deforestation, 

accelerated erosion, and the loss of habitats. 

Accordingly, this study aims to assess land-use 

changes and analyze spatial characteristics and 

landscape patterns in the Chalus watershed over 

four decadal intervals (1982 to 2022) to gain a 

comprehensive understanding of the impact of 

development on the prevailing ecological 

conditions and to inform land planning and 

management efforts. In accordance with the 

aforementioned, the objectives of this research 

are as follows: The study will accomplish the 

following: (1) modeling land-use changes in the 

study area using Landsat imagery in the Google 

Earth Engine platform over the 1982 to 2022 

period, and (2) analyzing landscape patterns 

based on landscape metrics for understanding 

land-use change trends in the study area. 

2. Material and methods 

2.1. Study area 

       The Chalus River watershed represents a 

portion of the larger Chalus watershed, 

encompassing an area of approximately 

102,000 hectares in Mazandaran Province (Fig. 

1). This watershed is part of the Caspian Sea 

basin and is comprised of 18 sub-watersheds.
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 he maximum and minimum elevations within 

the Chalus River watershed are 4,260 meters 

and 158 meters above sea level, respectively. 

The region is distinguished by precipitous 

topography with a prevailing northward 

orientation. The prevailing climatic conditions 

are cold semi-humid and cold humid, with 

some lower elevations exhibiting a cold semi-

arid climate. The annual precipitation ranges 

from 3,288 mm to 2,153 mm. The Chalus 

watershed has experienced significant 

environmental challenges due to anthropogenic 

activities, particularly land use change and the 

discharge of wastewater into the river over the 

past decade.

 

 

Fig. 1. Geographic location of the study area. 

2.2. Data collection  

The necessary data for this study were gathered 

through on-site observations and the utilization 

of remote sensing products to map the land use 

of the region and measure the changes over 

different time periods. Corrected images 

(Landsat collectrion 2, level 2) from various 

Landsat series (Landsat 3 through Landsat 8) 

were utilized, including multispectral images 

from the MSS, TM, ETM+, and OLI sensors for 

the years 1982, 1992, 2002, 2012, and 2022. It 

is important to note that images from these 

years were selected between July 1 and 

September 30, with cloud cover below 10 

percent. The Digital Elevation Model (DEM) 

was derived from the Shuttle Radar 

Topography Mission (SRTM) imagery. 

Training samples for land-use mapping for the 

years 1982, 1992, 2002, and 2012 were 

prepared based on Google Earth images. 

Training samples for 2022 were collected 

through a combination of Google Earth images 

and GPS-based field samples gathered during 

site visits. The image acquisition and 

processing were conducted within the Google 

Earth Engine platform. 

2.3. Image preparation 

To create land-use maps for 1982, 1992, 2002, 

2012, and 2022, surface reflectance images 

from the Landsat 3, 5, 7, and 8 satellites were 

utilized in the Google Earth Engine. These 

images were selected due to their high spatial 

resolution to provide detailed information 

about the surface characteristics of the Earth's 

land masses. The images were acquired with 

path 35 and row numbers 177 and 178, 

subsequently processed using the Google Earth 

Engine software. Subsequently, the surface 

reflectance images for each sensor were 

imported into the Google Earth Engine 

environment and aligned with the boundaries of 

the study area using the spatial filter designated 

as "FilterBounds." Subsequently, the images 

were filtered to encompass the temporal range 

between July 1 and September 30, utilizing the 

`FilterDate` function. Furthermore, images 

exhibiting cloud cover in excess of 10 percent
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were excluded through the implementation of 

the "LessThan" filter. Once the requisite filters 

had been applied, a mosaic of the images was 

created using the Mosaic function, and the 

images were cropped according to the 

boundaries of the study area using the Clip 

function. 

2.4. Land use classification 

In this study, the random forest method was 

employed for the purpose of image 

classification. Training samples were gathered 

for the land-use classes within the region, 

including forest, grassland, barren land, 

agriculture, built-up areas, and water bodies, 

using the "Add a Marker" tool. An effort was 

made to ensure an even distribution of training 

samples across the image, with the objective of 

improving classification accuracy. It was 

hypothesized that precise location and adequate 

distribution of training areas across the image 

would enhance classification precision. 

Subsequently, the samples for each land-use 

class were merged using the "Merge" function. 

Subsequently, the "sampleRegions" command 

was employed to train the classifier, followed 

by clustering with the "smileRandomForest" 

function. The number of trees in the random 

forest was set to 6. Subsequently, the classified 

map was generated using the `classify` 

command, and the resulting output was 

exported using the `Export.image.toDrive` 

function. 

2.5. Accuracy assessment 

The accuracy of a classification may be 

validated through the use of both quantitative 

and qualitative methods. Quantitative methods 

include the use of an error matrix, whereas 

qualitative methods may entail visual 

interpretation. The error matrix method allows 

for the calculation of four parameters: 

producer's accuracy, user's accuracy, overall 

accuracy, and the Kappa coefficient. The 

producer's accuracy is calculated by dividing 

the number of correctly classified pixels in a 

row by the total number of pixels in that row 

and multiplying the result by 100. The user's 

accuracy is calculated by dividing the number 

of correctly classified pixels in a column by the 

total number of pixels in that column, and then 

multiplying the result by 100. Overall accuracy 

is calculated by dividing the total number of 

correctly classified pixels by the total number 

of pixels evaluated. The Kappa coefficient is 

derived based on the overall accuracy and the 

random accuracy (Eastman, 2012). In the 

present study, the land-use maps were validated 

using both an error matrix and visual 

interpretation. A total of 300 control points was 

utilized to evaluate the accuracy of the 

classification. The control points employed for 

2022 were obtained randomly using GPS 

during field visits, while samples were prepared 

based on Google Earth images for 1982, 1992, 

2002, and 2012. 

2.6. Land-use change assessment 

After generating and validating the land-use 

maps for the study area for the years 1982, 

1992, 2002, 2012, and 2022, land-use change 

was assessed for four ten-year intervals (1982–

1992, 1992–2002, 2002–2012, and 2012–2022) 

as well as the entire forty-year period (1982–

2022). It was performed using the Land Change 

Modeler (LCM) in the TerrSet software. 

2.7. Landscape metrics 

In this study, land-use changes in the study area 

were analyzed using key and widely-used 

landscape metrics, including patch density 

(PD), largest patch index (LPI), number of 

patches (NP), edge density (ED), landscape 

shape index (LSI), and Cohesion index at the 

landscape scale (entire watershed). Additional 

details of the metrics are described in Table 1 

(McGarigal et al., 2012; Kumar et al., 2018; 

Arora et al., 2021; Shim and Choi, 2024). These 

metrics represent the main features of the 

landscape, including fragmentation and 

discontinuity, which can provide valuable 

insights into the effects of land use changes. 

Based on the land-use maps generated in the 

preceding step, the aforementioned metrics 

were calculated for different time points using 

the Fragstats software. 
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2.8. Land-use change assessment based on 

landscape metrics 

Following the calculation of landscape metrics 

at the landscape scale, land-use changes were 

subjected to analysis and comparison according 

to the metrics. Change diagrams for each metric 

were generated in the Excel 2016 environment 

for the purpose of visualization. 

 

Table 1. Descriptions of the landscape metrics (McGarigal et al., 2012). 

Metric Unit Description 

Number of Patches (NP) Unitless 
NP demonstrates the number of patches present within a specified area. A 

higher value indicates a greater degree of landscape fragmentation. 

Patch Density (PD) 
Number per 
100 Hectares 

This index represents the ratio of the number of patches within a specified area 
to the total area, with a higher value indicating greater landscape fragmentation. 

Edge Density (ED) 
Meters per 

hectare 

ED is defined as the ratio of the total length of edges to the total area of the 

landscape. A higher value indicates a greater degree of fragmentation. 

Largest Patch Index (LPI) Percentage 

The LPI quantifies the proportion of the total landscape represented by the 

largest patch. Values range from 1 to 100, with higher values indicating reduced 

landscape fragmentation. 

Cohesion Index Unitless 
This index assesses the physical connectivity of patches of the same land use 

type within a given area. Lower values indicate increased habitat fragmentation. 

Landscape Shape Index 

(LSI) 
Unitless 

This index is a standard measure of the total edge or edge density in a given 
landscape. A higher value indicates a more complex landscape boundary 

structure. 
 

3. Results and discussion   

           In this study, land-use maps for the study area 

were generated for the years 1982, 1992, 2002, 

2012, and 2022 based on Landsat images using 

Google Earth Engine. The results are illustrated in 

Fig. 2. The maps were validated using an error 

matrix, and the results are presented in Table 2. 

Table 3 presents the area designated to each land-

use category over the specified time periods, while 

Fig. 3 illustrates the trends in these changes. The 

investigation of land-use changes was conducted 

over four ten-year periods: 1982-1992, 1992-2002, 

2002-2012, and 2012-2022. Additionally, the 

analysis was extended to encompass the entire 40-

year period from 1982 to 2022, utilizing the Land 

Change Modeler (LCM). The findings of this 

evaluation are presented in Table 4 and illustrated in 

Fig. 4. Fig. 5 additionally illustrates the areas of gain 

and loss for each land use type across the specified 

time periods. Furthermore, Fig. 6 illustrates the 

trend of land use changes. 

Table 2. Results of accuracy assessment for Land-use classification. 

Parameter 1982 1992 2002 2012 2022 

Overall accuracy (%) 84 84 85 86 88 

Kappa coefficient 0.80 0.80 0.81 0.82 0.84 
User’s accuracy (%) 81 82 83 84 85 

Producer’s accuracy (%) 81 81 82 83 84 
 

Table 3 Area allocated to each land-use in different years 

Land-use 1982 1992 2002 2012 2022 

Rangeland 
ha 88279 92827 98001 104757 112115 

% 51 53 56 60 64 

Forest 
ha 84063 79053 73759 66607 58939 

% 48 45 42 38 34 

Agriculture 
ha 1216 1505 1546 1334 1490 

% 0.7 0.9 0.9 0.8 0.9 

Built-up areas 
ha 301 546 601 1175 1317 

% 0.2 0.3 0.3 0.7 0.8 

Waterbodies 
ha 81 110 135 168 180 

% 0.05 0.06 0.08 0.1 0.1 
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Fig. 2. Land-use maps of the study area in different years. 

Table 4. Changes in the area (ha) of land use in different periods. 

Land-use 1982-1992 1992-2002 2002-2012 2012-2022 1982-2022 

Rangeland 4448 5174 6756 7358 23736 
Forest -5010 -5294 -7152 -7668 -25124 

Agriculture 289 41 -212 156 274 

Built-up areas 245 55 574 142 1016 
Waterbodies 29 25 23 12 99 

   

Fig. 3. Ternds of the area allocated to each land-use type during the different years. 

In this study, landscape metrics were calculated 

at the landscape scale (entire watershed). These 

included PD, NP, LPI, LSI, ED, and cohesion 

index. The results of these metrics are presented 

in Table 5. Additionally, the variations in 

landscape metrics across different years were 

compared, with the results shown in Figure 7. 

Table 6 displays the differences in the metrics 

at the land-use level between 1982 and 2022. 

The results indicated that five predominant 

land-use categories—forest, agriculture, 

rangeland, built-up areas, and water bodies—

are present in the study area. The Kappa 

coefficient, overall accuracy, producer 

accuracy, and user accuracy values for the 

generated land-use maps were, respectively, 

0.80, 84%, 81%, and 81%, in 1982, 0.80, 84%, 

81%, and 82% in 1992, 0.81, 85%, 82%, and
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83% in 2002, 0.82, 86%, 83%, and 84% in 

2012, and 0.84, 88%, 84%, and 85% in 2022. 

These findings substantiate the satisfactory 

degree of accuracy and reliability in the land-

use map classification. As calculated by 

Ambarwulan et al. (2023), Kappa coefficient 

and overall accuracy of approximately 83% for 

modeling land-use changes in the Cisadane 

watershed in Indonesia. Similarly, Sisay et al. 

(2023) estimated the overall accuracy and 

Kappa coefficient for land-use classification in 

the Guang watershed in Ethiopia to be above 

86% and 0.84, respectively. 

It was clarified that rangeland, forest, 

agriculture, built-up areas, and water bodies in 

1982 covered 88379, 84063, 1216, 301, and 81 

ha, respectively, accounting for 51%, 48%, 

0.7%, 0.2%, and 0.05% of the watershed, 

respectively. By 1992, these land-use 

categories varied 92827, 79053, 1505, 546, and 

110 ha, respectively, representing 53%, 45%, 

0.9%, 0.3%, and 0.06% of the region. In 2002, 

the aforementioned land-use categories 

exhibited a notable shift in their respective 

areas, which were recorded at 98001, 73759, 

1546, 601, and 135 ha. This corresponded to 

56%, 42%, 0.9%, 0.3%, and 0.08% of the 

watershed, respectively. Moreover, in 2012, the 

areas designated for land uses were 104757, 

66607, 1334, 1175, and 168 ha, representing 

60%, 38%, 0.8%, 0.7%, and 0.1% of the study 

area, respectively. By 2022, the aforementioned 

land uses had reached 112115, 58939, 1490, 

1317, and 180 ha, respectively, accounting for 

64%, 34%, 0.9%, 0.8%, and 0.1% of the 

watershed.

 
Fig. 4. Land use conversion in the desired periods.
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Fig. 5. Gains and losses area for each land use (W: Waterbody, B: Built-up area, A: Agriculture, F: Forest, and R: Rangeland)  

in different periods. 

 
Fig. 6. Trends of land-use changes across different periods. 

Table 5. Results of metrics calculation at the landscape scale. 

Year NP PD LPI ED LSI Cohesion 

1982 5725 303 34 21 24 99.8 

1992 8803 5.1 35 26 28 99.8 

2002 9660 5.6 37 26 28 99.8 

2012 7881 4.5 59 22 25 99.8 

2022 13702 7.9 62 32 35 99.8 

*Number of Patches (NP), Patch Density (PD), Largest Patch Index (LPI), Edge Density (ED), and Landscape Shape 

Index (LSI) 
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The land uses of rangeland, forest, agriculture, 

built-up areas, and water bodies exhibited 

changes in the area, by 4448, -5010, 289, 245, 

and 29 ha during the first decade (1982–1992). 

In the second decade (1992–2002), the changes 

were 5174, -5294, 41, 55, and 25 ha, 

respectively. In the third decade (2002–2012), 

the areas of these land uses exhibited 

fluctuations of 6756, -7152, -212, 574, and 33 

ha, respectively. Similarly, during the fourth 

decade (2012–2022), these land uses exhibited 

variations of 7358, -7668, 156, 142, and 12 ha, 

respectively. Furthermore, over the forty-year 

period (1982-2022), the total changes in area 

for the land uses of rangeland, forest, 

agriculture, built-up areas, and water bodies 

were 23736, -25124, 274, 1016, and 99 ha, 

respectively. 

The results demonstrate that the land-uses of 

rangelands, built-up areas, and water bodies 

exhibited an overall increase across all four 

periods. However, the most notable alterations 

in built-up areas and water bodies occurred 

during the third decade (2002–2012), whereas 

changes in rangeland were most evident during 

the fourth decade (2012–2022). The utilization 

of agricultural land exhibited an upward 

trajectory during the first, second, and fourth 

decades, while it demonstrated a decline during 

the third decade. The most substantial 

alterations in agricultural land use were 

documented during the first decade (1982–

1992), whereas the least pronounced changes 

were observed during the second decade 

(1992–2002). The reduction in agricultural land 

use during the third decade can be primarily 

attributed to the conversion of agricultural areas 

to built-up areas, particularly in the northern 

part of the region. Forest land use demonstrated 

a uniform decline across all four time periods. 

The smallest and largest decreases were 

observed in the first (1982–1992) and fourth 

(2012–2022) decades, respectively. The highest 

rate of land-use conversion occurred in the 

fourth decade (2012–2022), while the lowest 

was in the first decade (1982–1992). The 

changes observed in the fourth decade were 

approximately 1.5, 1.4, and 1.04 times greater 

than those observed in the first, second, and 

third decades, respectively. The fourth decade 

was characterized by population growth and 

increased human activities in the region, which 

were among the main factors contributing to the 

greater extent of land-use changes during this 

period. 

 
Fig. 7. Trends of landscape metrics in the study area across different periods.
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Table 6. Differences in landscape metrics between 1982 and 2022. 

Land-use NP PD LPI ED LSI Cohesion 

Rangeland 2.9 2.9 1.8 1.5 1.3 1.0 

Forest 1.7 1.7 0.2 1.4 1.7 1.0 

agriculture 15.0 15.0 0.2 3.8 3.2 0.9 
Build-up areas 2.8 2.8 11.4 2.9 1.4 1.1 

Water bodies 11.4 11.4 2.5 2.9 1.9 1.0 
*Number of Patches (NP), Patch Density (PD), Largest Patch Index (LPI), Edge Density (ED), and Landscape 

Shape Index (LSI) 

The results indicate that over the past forty 

years (1982–2022), there has been an increase 

in the extent of rangeland, agriculture, built-up 

areas, and water bodies. The construction of 

dams in the region has been identified as a 

contributing factor to the observed increase in 

water bodies. The growth rates for these land-

uses were 27%, 23%, 338%, and 122%, 

respectively, compared to 1982. These findings 

indicate a growing trend of land use changes 

influenced by anthropogenic activities. In 

contrast, forest land use exhibited a decline, 

with a reduction of 30% over the specified 

period. These findings indicate that built-up 

areas have experienced the highest growth rate 

among all land-use categories over the past four 

decades. In summary, by 2022, the area of 

rangelands, forests, agricultural lands, built-up 

areas, and water bodies had increased to 

approximately 1.3, 0.7, 1.2, 4.4, and 2.2 times 

their respective areas in 1982. The reduction of 

one-third of forest areas, coupled with the 

expansion of built-up areas and agricultural 

lands, indicates a regressive ecological trend in 

the study area over the past forty years. This 

significant loss of forest land, largely replaced 

by built-up, agricultural, and rangeland areas, 

represents a profound alteration in the region's 

ecosystem structure. Such transformations have 

resulted in the degradation of natural habitats, a 

decline in biodiversity, and a deterioration of 

ecological conditions in the area. Prior studies 

have similarly evaluated land-use alterations 

across diverse Iranian and global regions, 

underscoring the considerable influence of 

expanding human activities on land 

transformation and land-use conversion. Zare et 

al. (2017) examined land-use changes in Noor 

County from 1986 to 2013, emphasizing that 

the most significant land-use change involved 

the conversion of agricultural land to urban 

areas in Noor. The study revealed a negative 

trend for forest and agricultural land use, while 

residential land use exhibited a positive trend, 

with the extent of residential areas increasing 

fivefold between 1986 and 2013. Similarly, 

Bogale et al. (2024) demonstrated that the 

intensity of land cover change in the 

northwestern Ethiopian highlands has 

continued over three time periods: 1990–2000, 

2000–2010, and 2010–2020. Bachri et al. 

(2024) examined land-use changes in the Rejali 

watershed in Indonesia from 2002 to 2022. 

Their findings revealed a decrease in water 

bodies (5.31%), forest areas (23.80%), built-up 

areas (3.15%), open land (0.48%), agricultural 

land (23.71%), and undeveloped land (0.01%) 

over the study period. 

This study employed landscape metrics, 

including Edge Density (ED), Patch Density 

(PD), Number of Patches (NP), Landscape 

Shape Index (LSI), Largest Patch Index (LPI), 

and Cohesion Index, to assess the landscape 

fragmentation in the study area at the landscape 

level (entire watershed) over designated time 

intervals. The results demonstrated that the 

lowest values of NP, PD, LPI, ED, and LSI 

across the watershed were observed in 1982, 

with values of 5,725, 3.3, 34, 21, and 24, 

respectively. In contrast, the highest values of 

these metrics were observed in 2022, 

amounting to 13,702, 7.9, 62, 32, and 35, 

respectively. The analysis of changes revealed 

that the selected metrics have exhibited an 

upward trajectory from 1982 to 2022. These 

findings confirm that, influenced by land-use 

changes in the region over this period, the level 

of landscape fragmentation and disintegration 

has continued to increase. However, the values 

obtained for the Cohesion Index across the 

specified years showed no significant variation. 

Analyses indicate that over the past forty years, 

the metrics of NP, PD, LPI, ED, and LSI in the 

entire watershed have clarified an increasing 

trend, while the Cohesion index has remained 

relatively stable. These findings corroborate the 

hypothesis that, from 1982 to 2022, the 

landscape patches in the watershed have 

undergone significant changes in terms of 

number, density, shape, and size. This evidence 

substantiates the assertion that the region has 

experienced fragmentation and disintegration 

of habitats during this period.
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The findings of this study demonstrated that 

landscape metrics can effectively assess land-

use changes from various perspectives, 

including patch number, density, shape, size, 

and connectivity, at both the landscape and 

land-use type scales. This approach provides 

valuable information to support land 

management and planning. Previous studies 

have also highlighted the importance of 

landscape metrics in evaluating land-use 

changes. Sithole et al. (2024) utilized landscape 

metrics such as PLAND, LSI, SHDI, SIDI, PD 

and Cohesion in assessing land-use changes 

and emphasized their significance. Sertel et al. 

(2018) investigated the impact of land-use 

changes on various landscape metrics, 

including NP, ED, LPI, Euclidean nearest 

neighbor distance (ENN), split index (SPLIT), 

and aggregation index (AI) in the metropolitan 

area of Izmir, Turkey. They confirmed that 

using landscape metrics allows for a more 

detailed examination of landscape 

characteristics. 

 

4. Conclusion 

          The objective of this study was to 

evaluate land use alterations in the Chalus 

watershed and analyze the landscape pattern in 

different periods. The results demonstrated that 

over the past four decades (1982-2022), there 

have been notable changes in the distribution of 

land use types, including rangeland, forest, 

agricultural areas, built-up regions, and 

waterbodies. Furthermore, it was determined 

that the extent of rangeland, built-up areas, and 

waterbodies exhibited a consistent increase in 

all time periods. The utilization of agricultural 

land exhibited an upward trajectory during the 

1982-1992, 1992-2002, and 2012-2022 

decades, whereas a decline was discerned 

during the 2002-2012. However, forest land 

exhibited a persistent decline across all four 

periods. The findings substantiated that from 

1982 to 2022, considerable alterations in the 

number, density, configuration, and dimensions 

of landscape patches were observed across the 

entire watershed, indicating an increased 

fragmentation and disconnection of regional 

habitats. It was confirmed that landscape 

metrics are an effective tool for assessing land 

use changes at various dimensions, including 

the number, density, shape, size, and 

connectivity of patches at the landscape scale. 

Such metrics provide valuable insights for land 

management and planning. Furthermore, it was 

demonstrated that the expansion of built-up 

areas and agricultural activities pose significant 

challenges and exacerbate the fragmentation 

and disintegration of natural habitats in the 

region. Accordingly, it is essential to 

implement strategic measures and sound 

planning to prevent further fragmentation and 

degradation of the region's landscape. 
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