Determining of the most appropriate method for calculation of LS factor of RUSLE3D model in a typical semi-arid mountainous watershed

Document Type : Original Research Article

Authors

Faculty of Natural Resources, University of Tehran, Karaj, Iran

Abstract

Assessing of topographic effects for erosion modelling and model calibration can differ in terms of complexity, considered processes and data availability. The topographic factor is the most sensitive parameter of RUSLE3D model for predicting of the soil loss, where a higher relative effect of the steepness factor is observed in a simple analysis of sensitivity. Due to wide spread application of USLE family models, finding the most accurate method for calculating of LS factor is a key point in each environmental condition. Therefore, This research was conducted to find the accurate method and suitable geodata to calculate the LS factor based on using of DEM with two resolutions 10 & 30 meter, three methods for calculation specific catchment area and calibration of m parameter to create a distributed model different erosion features (facies). Results indicates that the m & n exponents of runoff and slope terms in LS’s equation reflect soil detachment and sediment transport capacity concerned to the relationship between hydraulic characteristics of overland flow More spatial data analysis revealed that the validation analysis showed that calculation of LS factor based on the contribution area per unit contour length through 30*30m DEM is more closer to estimated erosion in the study area. However, for better calibration of RUSLE3D model in the study watershed the new value for m parameter m was estimated. Due to nature of LS equation the results of erosion rate is more sensitive to m and the new values of m for different erosion facies were estimate to estimate more accurate soil erosion under semi-arid condition.

Keywords

Main Subjects


Aiello, A., Adamo, M. & Canora, F., 2015. Remote sensing and GIS to assess soil erosion with RUSLE3D and USPED at river basin scale in southern Italy, Journal of Catana, 174-185.
Anghel, T. & Bilaşco, S., 2008. The Motru mining basin – GIS application on sheet erosion. Geographia Napocensis,  2(1),90-108.
Anghel, T. & Sandu, T., 2008. Quantitative assessment of soil erosion using GIS empirical methods. A comparative study between the Motru mining area and the Sucevita catchment. Analele Universităţii din Oradea, seria Geografie. 18, 95-102.
Anghel, T., Bilasco, S. & Oncu, M., 2007. Estimarea cantitativă a pierderilor de sol din bazinul Motru ca urmare a eroziunii de suprafaţă (aplicaţie GIS a modelului ROMSEM de tip USLE). Analele Universităţii Spiru Haret, seria Geografie, 10, 78-94.
Arghius, C. & Arghius, V., 2011. The quantitative estimation of the soil erosion using USLE type ROMSEM model. Case-study- the Codrului Ridge and Piedmont (Romania). Carpathian Journal of Earth and Environmental Sciences, 6(2), 59-66.
Bilasco, S., Horvath, C., Cocean, P., Sorocovschi, V. & Oncu, M., 2009. Implementation of the USLE model using GIS techniques. Case study the Someşean Plateau. Carpathian Journal of Earth and Environmental Sciences, 4(2), 123-132.
Desmet, P.J.J. & Govers, G., 1996. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv, 51, 427-433.
Engel, B., 1999. Estimating Soil Erosion Using RUSLE (Revised Universal Soil Loss Equation) Using ArcView. http://danpatch.ecn.purdue.edu/~engelb/abe526/gisru sle/gisrusle.html.
Filip, S., 2009. Starea morfodinamica, hazardele si vulnerabilitatea geomorfologica in depresiunea si munceii Baii Mari. Riscuri şi catastrophe, 8, 139-147.
Foster, G.R. & Meyer, L.D., 1977. Soil erosion and sedimentation by water an overview. Procs.  National Symposium on Soil Erosion and Sedimentation by Water, Am. Soc. Of. Agr. Eng., St. Joseph, Mechigan, 1-13.
Gisbert Blanquer, J.M., Ibáñez Asensio, G., Andrés Aznar, A. & Marqués Mateu, A., 2001. Estudio comparative de diferentes métodos de cálculo del factor “LS” para la estimación de pérdidas de suelo por erosión hídrica.
Edafología, 8, 57-66. Hill, T.M., Christen, S.D. & Davis-Dentici, K., 1995. Effect of supplementing late gestation and lactating ewes receiving low protein grass hay with barley or soybean meal. J. Sustainable Agriculture, 7(2-3), 41- 51.
Imbrenda, V., D’Emilio, M., Lanfredi, M., Macchiato, M., Ragosta, M. & Simoniello, T., 2014. Indicators for the estimation of vulnera- bility to land degradation derived from soil compaction and veg etation cover, Eur. J. Soil Sci., 65, 907-923.
Jenson, S.K. & Domingue, J.O., 1988. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54(11), 1593-1600.
JULIEN, P.Y., 1998. Erosion and Sedimentation. First paperback edition; first published 1994. xvii+280 pp. Cambridge, New York, Melbourne, 9-16.
Martz, L.W. & Garbrecht, J., 1992. Numerical definition of drainage network and subcatchment areas from digital elevation models. Computers & Geosciences, 18, 747-761.
Mihăiescu, P., Man, T. & Oncu, M., 2004. Evaluarea riscului de eroziune a solului în bazinul Someşului Mic prin aplicarea modelării GIS. Riscuri şi catastrofe. III, 251-261.
Mitasova, 2000. Terrain Modeling and Soil Erosion Simulation Final Report.
Mitasova, H., Brown, W.M., Hohmann, M. & Warren, S., 2010. [on line]. Using soil erosion modelling for im - proved conservation planning: A GIS-based Tutorial Geographic Modelling Systems Lab. UIUC., http:// skagit.meas.ncsu.edu.
Mitasova, H., Hofierka, J., Zlocha, M. & Iverson, L.R., 1996a. Modeling topographic potential for erosion and deposition using GIS. International Journal of GIS, 10, 629-641.
Moore, I.D., Turner, A.K., Wilson, J.P., Jenson, S.K. & Band, L.E., 1993. GIS and land-surfacesubsurface process modeling. In: Goodchild, M.FR., Parks, B.O. & Steyaert, L.T. (eds): Environmental modeling with GIS, 196-230.
Moore, I. & Burch, G., 1986b. Physical basis of the length–slope factor in the Universal Soil Loss Equation. Soil Science Society of America Journal, 50, 1294-1298.
Moore, I.D. & Wilson, J.P, 1992. Length–slope factors for the Revised Universal Soil Loss Equation: simplified method of estimation. Journal of Soil and Water Conservation, 47, 423-428.
Moore, I.D. & Burch, G.J., 1986a. Modeling erosion and deposition: topographic effects. Transactions of ASAE 29, 1624-1640.
O’Callaghan, J.F. & Mark, D.M., 1984. The extraction of drainage networks from digital elevation data. Computer Graphics and Image Processing, 28, 323- 344.
R Nigel, SDDV Rughooputh, 2010. Soil erosion risk mapping with new datasets: An improved identification and prioritisation of high erosion risk areas, Catena, 82(3), 191-205.
Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K. & Yoder, D.C., 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). U.S. Dept. of Agriculture, Washington, DC.
Rendell, H.M., 1986. Soil erosion and land degradation in Southern Italy. In: Fantechi, R., Margaris, N.S. (Eds.), Desertification in Europe. Springer, Netherlands, 184-193.
Salvati, L., et al., 2013. Map of long-term changes in land sensitivity to degradation of Italy. J. Maps, 10, 65-72.
Silva, A.M., 2003. Erosividade, erodibilidade e perdas por erosão em Cambissolo e Latossolo sob chuva natural. M.Sc. Thesis, Universidade Federal de Lavras.
Stefanescu, L., Constantin, V., Surd, V., Ozunu, A. & Vlad, S.N., 2011. Assesment of soil erosion potential by the USLE method in Roşia Montană mining area and associated NATECH events. Carpathian Journal of Earth and Environmental Sciences, 6(1), 35-42.
Tarboton, D.G. & Ames, D.P., 2001. Advances in the mapping of flow networks from digital elevation data, in World Water and Environmental Resources Congress, Orlando, Florida, May 20-24, ASCE.
Wischmeier, W.H. & Smith, D.D., 1978. Predicting rainfall erosion losses. A guide to conservation planning. USDA Agriculture Handbook no, 537, 58 p