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1. Introduction 

 

According to (Reading, 1996), "Facies" is 

defined as a volume of rock having specific 

characteristics. These characteristics might 

include any apparent property of rocks, such as 

their overall composition, appearance, or 

formation state, as well as any fluctuations in 

those qualities within a particular region. Facies 

constitute a continuous structure that may be 

grouped or separated in a lot of ways. They were 

classified according to rock type (siliciclastic or 

carbonate) and texture (Folk, 1954; Dunham, 

1962); grain size for siliciclastic; Dunham, 1962; 

classification for carbonates). 

In several definitions, the term "facies" has been 

expanded to include a specific depositional 

process or habitat, a well-sorted, fossiliferous, 

medium-grain quartz sand, for instance, is a 

simply descriptive lithofacies, while a medium-

grained quartz dune sand might be a matching 

genetic description. The previous, merely 

descriptive definition of facies was preferred by 

some, who objected to the genetic concept 

(Middleton, 1978; Walker, 1984; Selley, 1985, 

2000) and numerous others evaluated the idea of 

sedimentary facies. An interpretive (genetic) 

facies, according to (Anderton, 1985), is a term 

that summarizes how a particular unit of rock's 

deposition processes and environment are 

understood.  

 

Sustainable Earth Review 

Geological studies rely heavily on facies classification since it offers vital 

information for reservoir characterization and hydrocarbon exploitation. Because 

facies are inherently complex and heterogeneous, traditional approaches frequently 

struggle to categorize them effectively. Artificial Neural Networks (ANNs) have 

shown great promise in recent years for improving the efficiency and accuracy of 

facies classification. This review assesses ANN applications for facies classification 

in geological investigations critically and it begins by delineating the essential 

principles of facies classification and the constraints of traditional methodologies. 

Then ANNs' theoretical underpinnings and applicability to tasks involving the 

classification of facies was explored. The different architectures and configurations 

of ANNs used in geological research were also examined, as well as the benefits and 

difficulties of their use. The several ANNs architectures and configurations used in 

geological research are examined, as well as the benefits and difficulties of putting 

them into practice. In order to enhance the efficacy of ANNs in facies classification, 

the paper also addresses the integration of auxiliary data sources, such as well logs, 

seismic, and core data. Furthermore, the application of new developments in Deep 

Learning methods, including Recurrent Neural Networks (RNNs) and Convolutional 

Neural Networks (CNNs), to facies classification were discussed. To guarantee solid 

and trustworthy classification results, factors including feature selection, data 

preparation, and model assessment metrics were also taken into account. Lastly, the 

review highlights possible avenues for future research and breakthroughs in 

leveraging ANNs for enhanced facies classification, precision and effectiveness in 

geological studies.  
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Interpretive or genetic descriptions of facies 

features are frequently employed. According to 

(Anderton, 1985), there shouldn't be any issues 

with the usage of interpretative facies as long as 

the context makes it evident which facies are 

descriptive and which are interpretative. 

Whether the term "facies" is being used in a 

descriptive or interpretive sense can usually be 

determined by looking at the context (Walker, 

2006). There are several scales on which to 

define facies, including: the study's goal; 

amount of time available for measurements; and 

the quantity of descriptive features in the strata 

under examination (Walker, 2006). 

Facies Analysis: The primary benefit of facies 

analysis is that, globally, only a few numbers of 

facies are found repeatedly in rocks of varying 

ages (Selley, 1985). If each rock bed was 

regarded as a separate entity, there would 

certainly be no significant order in the study of 

sedimentary rock. Facies features, however, are 

not very valuable when considered alone. A 

grasp of the context and associations of facies is 

important for environmental interpretations 

(Reading, 1986b) and, in turn, appreciating the 

predictive value of facies analysis. 

Facies Model: Based on investigations of both 

recent sediments and ancient rock, a facies 

model, also known as a type model, in an 

idealized sequence of facies that provides a 

basic overview of a particular sedimentary 

environment (Walker, 1984). An idealized 

environmental summary or facies sequence is 

created by distilling the information that is 

currently available about a depositional 

environment in order to extract general 

information. A facies model should provide as 

more than just an overview of the surroundings, 

it should also provide the following 

- A standard for comparative purposes.  

- A framework and manual for upcoming 

observations. 

- A predictor in novel geological contexts  

- A comprehensive basis for understanding of 

the environment of the system that it represents 

(Walker, 1984). 

A sedimentologists' most effective and 

influential instrument for categorizing and 

understanding archaic sediments is the facies 

model paradigm. The core components of every 

facies model differ greatly. Some models, like 

the delta facies models of (Coleman and 

Wright, 1975; Galloway, 1975), are founded on 

surface geomorphological assessments, while 

others—like the turbidite model of (Bouma, 

1982) and the hummocky cross-stratification 

model of (Dott and Bourgeois, 1982)—aim to 

capture a whole depositional environment. The 

models of the fluvial facies belong to the latter 

group. 

Facies Sequence: Facies whose interactions and 

transitions are important in the aspect of the 

depositional environment are known as facies 

sequences (Walker, 1984; Reading, 1986b). 

Therefore, it could be more appropriate to speak 

to "facies successions" instead of "facies 

sequences". Nonetheless, the original 

terminology is kept in order to maintain 

consistency with the historical literature. One 

important thing to keep in mind is that, even 

though single facies may possibly not provide 

much context for the depositional environment, 

the order in which they occur might provide for 

more information. The review "Enhancing 

Facies Classification in Geological Studies 

through Artificial Neural Networks" stems from 

the increasing recognition of the significance of 

facies classification in geological studies, 

particularly in fields like reservoir 

characterization and subsurface modeling. 

Facies classification involves identifying and 

categorizing different rock or sediment types 

based on various geological attributes. 

Traditional methods of facies classification may 

have limitations, and researchers or 

professionals in the field may be seeking more 

advanced and effective approaches to address 

challenges and limitations in traditional facies 

classification methods in geological studies. By 

exploring the application of Artificial Neural 

Networks, the goal is to enhance the accuracy, 

efficiency and overall effectiveness of facies 

classification processes in the context of 

complex geological formations. 

The objectives of the Review are as follows as 

it aims to address several important challenges 

in geological studies related to facies 

classification. 

- Improved Accuracy and Efficiency: By 

leveraging artificial neural networks (ANNs), 

researchers can achieve higher accuracy and 

efficiency in facies classification compared to 

traditional methods. ANNs have shown promise 

in capturing complex patterns and relationships 

in geological data, leading to more precise 

classification outcomes (Fakhari et al., 2020). 
- Handling Complexity and Heterogeneity: 

Geological formations often exhibit complex 

and heterogeneous facies distributions, posing 

challenges for accurate classification. ANNs 
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offer the ability to model nonlinear 

relationships and capture subtle variations in 

geological features, thus enabling more 

effective classification of complex facies types 

(Tahmasebi et al., 2018). 

- Integration of Multisource Data: The 

integration of multiple data sources, such as 

well logs, seismic data, and core samples, is 

essential for comprehensive facies 

classification. ANNs provide a framework for 

integrating diverse datasets and extracting 

meaningful patterns, resulting in more holistic 

and reliable classification results (Sun et al., 

2021). 

- Robustness to Uncertainty: Geological data 

inherently contain uncertainties, which can 

impact the reliability of facies classification 

outcomes. ANNs offer robustness to 

uncertainty by learning from noisy and 

incomplete data, thus providing more robust 

and reliable classification results compared to 

traditional statistical methods (Yuan et al., 

2018). 
- Advancements in Geological Exploration and 

Reservoir Management: By enhancing facies 

classification accuracy and efficiency, ANNs 

contribute to advancements in geological 

exploration and reservoir management. 

Accurate characterization of facies distributions 

within reservoirs is crucial for optimizing 

exploration and production strategies, leading 

to improved reservoir management and 

hydrocarbon recovery (Huang et al., 2021). 

 

2. Material and Methods 

 

2.1. Brief overview of traditional facies 

classification methods  
 

Sedimentary bodies are mapped and 

classified using sedimentary facies analysis; 

each sedimentary body developed under a 

different set of depositional conditions. Usually, 

facies are ascribed according to their 

paleontological or physical traits (Middleton, 

1978; Dalrymple, 2010). Hydraulic and 

mechanical qualities, nevertheless, can be 

significantly impacted by the inherent textures 

and rock characteristics of different facies 

(Chang et al., 2000, 2002; Burton and Wood, 

2013; La Croix et al., 2013, 2017; Baniak et al., 

2014; He et al., 2016). According to Borer and 

Harris (1991), Dill et al. (2005), Khalifa (2005), 

Qi and Carr (2006), Qing and Nimegeers 

(2008), and other sources, the recognition of 

sedimentary facies is dependent on qualitative 

as well as quantitative parameters, such as 

mineral composition, texture and fabric, 

stratification, sedimentary structures, 

bioturbation, and grain-size dissemination. 

These variables can be employed in outcrop or 

core situations. But geological datasets are 

either scarce (like outcrop) or expensive (like 

core), therefore it might be difficult to build 

facies correlations with a regional perspective 

when there's not enough of control data. 

Because well log data represent the most 

plentiful and widely used dataset in subsurface 

investigations, facies distributions based on 

well log data are therefore greatly sought after 

(Berteig et al., 1985; Li and Anderson-Sprecher, 

2006; Dubois et al., 2007) since they comprise 

the most comprehensive and plentiful dataset in 

subsurface research. Facies mapping may be 

possible by the prediction of facies using 

traditional wireline logs, which might expand 

findings from the core size (centimeters to 

meters) to the well scale (meters or tens of 

meters), and finally to the regional scale (> 

kilometers). However, the method of 

quantitatively identifying facies from well logs 

is currently being improved so that it may be 

used in deposits from various depositional 

settings in addition to a range of sedimentary 

basins (Tang et al., 2011; Wang and Timothy, 

2013). Generally speaking, facies are 

determined by examining core samples. It is 

improbable that cores will be accessible during 

the whole subsurface interval of interest, 

nevertheless. As a result, centered on the facies 

characterization acquired using core samples 

and the number of measured well logs, 

mathematical techniques are often used to build 

a facies profile at the well location. In order to 

assign each sample to a distinct facies and 

cluster the samples measured by well logs in the 

specified number of facies, deterministic or 

probabilistic approaches can be used. Cut-off-

based techniques and other straightforward 

deterministic methods may be utilized, although 

they are only suitable for a few numbers of 

samples. Considering statistical tools can 

explain several variables and the relationships 

between various qualities, they are typically 

selected (Doyen, 2007). The fact that statistical 

approaches quantify classification uncertainty 

is another benefit of using them. Stated 

otherwise, the likelihood of a sample exhibiting 

intermediate traits shared by two distinct facies 

is often comparable, and this represents the 
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categorization uncertainty. Supervised and 

unsupervised classification techniques are used 

in statistical methods for facies categorization. 

Classifying facies throughout the well logs may 

be done by using supervised algorithms and 

assembling a training dataset if core samples are 

accessible. In situations when core samples are 

unavailable, meaning there isn't a training 

dataset, unsupervised methods can be utilized to 

optimize the differentiation between distinct 

features.  
  

2.2. Overview of Facies in Geology and its 

Significance 
 

Facies in geology are significant for 

understanding the depositional environments 

and processes that shaped the sedimentary 

record. They provide information about the 

physical, biogenic, and chemical conditions 

during deposition (Dim, 2021). Facies analysis 

and classification are crucial for reservoir 

description and modeling, aiding in predicting 

the distribution of rock properties and the extent 

of reservoirs (Chicheng et al., 2017). The study 

of facies-potential coupling effects on 

reservoirs helps in analyzing the relationships 

between different sand bodies and their 

potential for hydrocarbon 

accumulation (Zhongliang, 2009). Time-

specific facies (TSFs) are unique facies that 

characterize particular intervals of geologic 

time and provide insights into the interplay 

between processes of differing scales, such as 

alteration in redox conditions, sea level 

fluctuations, climate variations, and biotic 

evolution (Carlton et al., 2012). Additionally, 

facies analysis is important in metamorphic 

geology as it helps determine distinctive 

mineral assemblages that indicate specific 

metamorphic conditions (Martin and Hartwig, 

2020). Facies in geology have several 

significant implications. Firstly, facies-

potential coupling effects on reservoirs can 

provide details regarding the characteristics of 

oil and gas accumulation in different scales, 

such as sand body, sand layer, and core 

scales (Zhongliang, 2009). Secondly, facies 

analysis can help in understanding the 

conditions that shaped the environments of 

occurrence during deposition, as well as the 

different lithofacies associations and 

depositional cycles/successions (Dim, 2021). 

Thirdly, sedimentological analysis of facies can 

provide details of the source areas of sediments 

and the tectonic background of basins, helping 

in the understanding of basin evolution (Chen, 

2014). Lastly, the study of facies can reveal the 

factors in charge of the creation of specific 

decorative grain fabrics, such as sedimentary 

tectonic background, ecology and biogliph, and 

diagenesis (Xu, 2001). Overall, facies analysis 

plays a vital part in comprehending the 

sedimentary processes, depositional 

environments, and geological history of an area. 
 

2.3. Importance of facies classification in reservoir 

characterization 
 

In recent research, there has been an emphasis 

has been laid on the benefits of facies 

classification in reservoir characterization for 

understanding reservoir heterogeneity, 

optimizing production strategies, improving 

reservoir modeling accuracy, quantifying 

uncertainty, and enhancing exploration and 

development efforts. Below are some of the 

benefits of facies classification in reservoir 

characterization: 

(a) Understanding Reservoir Heterogeneity: 

Facies classification helps in delineating 

different sedimentary facies within a reservoir, 

each with distinct properties such as porosity, 

permeability, and fluid saturation. 

Understanding this heterogeneity is essential for 

accurately characterizing reservoir architecture 

and predicting fluid flow behavior (Zhang et al., 

2022). 

(b) Optimizing Well Placement and Production 

Strategies: Accurate facies characterization 

enables better identification of high-quality 

reservoir zones, which is crucial for optimizing 

well placement and designing effective 

production strategies. By targeting areas with 

favorable facies characteristics, operators can 

maximize hydrocarbon recovery and minimize 

production risks (Chen et al., 2023). 

(c) Improving Reservoir Modeling and 

Simulation: Facies classification provides the 

foundation for building realistic reservoir 

models. By integrating facies data into reservoir 

simulation workflows, forecasting models that 

take spatial variables into consideration can be 

produced by engineers. in lithology and fluid 

properties. This integration enhances the 

accuracy of reservoir performance predictions 

and supports decision-making processes (Li et 

al., 2022). 

(d) Quantifying Uncertainty and Risk: Facies 

classification is essential for quantifying 
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uncertainty and risk in reservoir 

characterization. By incorporating uncertainty 

assessments related to facies distribution and 

properties, practitioners can perform robust risk 

analysis and develop contingency plans to 

mitigate uncertainties associated with reservoir 

development and production (Wang et al., 

2023). 

(e) Enhancing Exploration and Development 

Strategies: Facies classification aids in the 

interpretation of depositional environments and 

geological processes that influenced reservoir 

formation. This knowledge is valuable for 

guiding exploration and development strategies, 

helping operators identify prospective areas for 

drilling and prioritize investment decisions 

(Smith et al., 2024). 
 

3. Results and discussion 
 

3.1. Basic Concepts of Artificial Neural Networks  
 

A technology for virtual intelligence called a 

neural network may conduct analysis and 

produce results by simulating the human brain. 

Because of the benefits of nonlinear 

classification and computation, its usage in 

reservoir engineering is progressively 

developing and has the potential to replace 

existing analytical methods for reservoir 

characterization. Unsupervised and supervised 

neural networks are the two different kinds of 

neural networks. Recently, neural network is a 

newly developed technology that is currently 

applied to many areas of log evaluation. The 

novel strategy has shown to be more effective 

than the traditional statistical approach 

(Goncalves, 1995; Wong, 1995). With a few 

exceptions, a numerous number of neural 

network applications that have been published 

are based on Back Propagation Neural 

Networks (BPNN) (Baldwin, 1992; Rogers, 

1992; Goncalves, 1995; Wong, 1995 a, b; Fung, 

1995) It made use of Learning Vector 

Quantization (LVQ), Self-Organizing Map, and 

Fuzzy ARTMAP. The input employed when 

BPNN is employed as a predictive model 

includes information from a variety of logging 

devices, including bulk density, resistivity, 

gamma ray, and neutron porosity. The BPNN 

produces outputs that correlate to many output 

characteristics, including permeability, 

porosity, and rock matrices. A set of input and 

output vectors are utilized to train the 

supervised Bayesian Neural Network (BPNN). 

The error back-propagation algorithm is the 

learning algorithm that is frequently utilized 

(Rumelhart, 1986). Despite the algorithm's 

success in numerous applications, its 

drawbacks, namely its lengthy training period, 

have made practical deployment difficult. This 

necessitates enhancing the fundamental BPNN 

algorithm or alternative network designs. 
 

3.2. Artificial Neural Networks (ANNs) in 

Geological Applications 
 

Previous research has concentrated on applying 

statistical techniques, such as discriminant 

analysis, to analyze facies from well logs; 

(Sakurai and Melvin, 1988; Avseth et al., 2001; 

Tang et al., 2004), building large-scale, 

geologically plausible, static reservoir models 

requires highly precise sedimentary facies 

forecasting such as naïve Bayes classifier (Li 

and Anderson-Sprecher, 2006; He et al., 2016), 

fuzzy logic (Cuddy, 2000; Saggaf and Nebrija, 

2003), and support vector machines (El-

Sebakhy et al., 2010; Wang et al., 2014; Deng 

et al., 2017). Artificial Neural Networks (ANN) 

have also been fully applied in the last ten years 

(Derek et al., 1990; Wong et al., 1995; 

Siripitayananon et al., 2001; Bhatt and Helle, 

2002; Wang and Timothy, 2012) due to its 

capacity to decipher non-linear correlations, 

quantify learning from training data, and 

collaborate with other forms of artificial 

intelligence in the prediction of sandstone and 

carbonate lithofacies (Bohling and Dubois, 

2003; Kordon, 2010). The feedforward ANN 

classifier known as the Multilayer Perceptron 

Classifier (MLPC) is not a very good classifier 

for pattern recognition, its benefits show to a 

wide range of scientific and academic 

applications for it. When it comes to choosing 

sensitive input variables, designing learning 

methods, choosing network architecture, and 

customizing codes for unique problems, MLPC 

is incredibly adaptable (Wang and Carr, 2012 a, 

b). Because MLPC can solve complicated 

nonlinear problems stochastically, it is a 

valuable research tool, particularly in the use of 

shale lithium-ion batteries (Wang and Carr, 

2012 a, b). 

Although most prior approaches for 

determining facies from wireline logs have 

identified facies at each well data point, they 

have not taken vertical continuity in the facies 

profile into consideration. Every sample in the 

well log was identified apart from the ones next 
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to it, consequently facies profiles produced in 

this manner, implausible facies successions 

tend to emerge. For a considerable amount of 

time, Markov Chain Analysis (MCA) has been 

utilized to ascertain if the underlying facies or 

the occurrence facies in a geologic succession 

are interdependent (Gingerich, 1969; Le Roux, 

1994; Xu and MacCarthy, 1998; Bohling and 

Dubois, 2003). MCA data can be used as 

independent evidence to support interpretations 

of facies associations since they show the 

existence of favored vertical occurrences of 

facies in a sedimentary succession (Miall, 1973; 

Powers and Easterling, 1982; Wells, 1989; 

Carle, 1999). In complex and varied 

sedimentary systems, this enhances facies 

relationships and facies succession prediction 

(Weissmann, 2005). 

 

3.3. Types of ANNs used in Facies Classification 
 

Different types of Artificial Neural Networks 

used in facies classification include Deep 

Neural Networks (DNN) such as DeepLabv3+ 

and Generative Adversarial Network (GAN) as 

shown in Figs 1 and 2 below respectively after 

(Kaur et al., 2023). 1D-CNN model (Soleimani 

et al., 2023) Recurrent Neural Network (RNN) 

models like Long Short-Term Memory 

(LSTM), bidirectional long short-term memory 

(Bi-LSTM), and Convolutional Recurrent 

Neural Network (CRNN) (Tian and Verma, 

2022) and Deep Learning Neural Network with 

a 3D Conditional Random Field (CRF) 

layer (Ekaterina and Anton 2022). Additionally, 

a modified CNN that incorporates learnable 

Gabor convolutional kernels been utilized for 

facies classification (Wang and Alkhalifah, 

2023).  
 

 
Fig. 1. DeepLab architecture for facies segmentation. Multiscale contextual information is encoded by the encoder using atrous convolutions 

at multiple scales and the segmentation results are refined along the object boundaries by the decoder module after (Kaur et al., 2023). 

 

 
Fig. 2. GAN generator architecture for facies segmentation (Kaur et al., 2023). The objective function for network training in this case is a 

combination of adversarial loss and multiclass cross-entropy loss. 
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Other types of artificial neural networks that are 

been used for facies classification includes 

Convolutional Neural Network (CNN), which 

has shown high accuracy in seismic facies 

classification and seismic interpretation 

(Mohammed et al., 2023; Wang and Alkhalifah, 

2023). Additionally, a multi-layer CNN are 

used for automatic recognition of seismic facies 

with special reflection structures, providing 

better accuracy and efficiency compared to 

manual interpretation (Wang and Alkhalifah, 

2023).  Another type is the Gabor-CNN, which 

combines the interpretability of Gabor filters 

with the learning ability of CNNs, resulting in 

improved generalization for facies 

classification tasks (Mohammed et al., 2023). 

The Deep Neural Network (DNN), are used for 

instant and consistent facies classification of 

carbonate rocks (Nan et al., 2023). 

Additionally, the use of a 1D-CNN model that 

has been recommended for geological facies 

classification in wells, displaying outcomes that 

are more precise than other models (Jiachun et 

al., 2023). Shallow ANN (SANN) is another 

type of Neural network that is frequently used 

in exceptionally nonlinear regression and 

classification applications, and it was inspired 

by biological neural networks. There is 

currently much coverage on the use of Shallow 

Artificial Neural Networks (SANN) in 

facies/lithology prediction (Wang and Carr 

2012; Ma, 2011; Tang et al., 2011). 

Comparisons, however, reveal that for facies 

classification, shallow ANN offers no 

appreciable advantage over more established 

machine learning techniques like Support 

Vector Machines (SVM) and Random Forests 

(RF) (Deng et al., 2019; Cracknell and Reading 

2014; Halotel et al., 2019). The computational 

efficiency of the shallow ANN is compared to 

that of other neural network architectures, and it 

is considered as the essential component for 

Deep Neural Network structures. Three layers 

make up a shallow ANN, also known as a 

multilayer perceptron (MLP): an input layer, a 

hidden layer, and an output layer as shown in 

Fig. 3. These different types of neural networks 

offer various advantages and can be suitable for 

different types of facies classification tasks.  

 

 
Fig. 3. The shallow neural networks (MLP) design. Panel (a) displays the panel and the fully connected input, hidden, and output layers (b) 

demonstrates the relationship between two neurons in nearby layers after (Tiang et al., 2021). 

 

3.4. Review on the Advantages of Artificial Neural 

Network (ANN) in Geological Facies Classification 
 

Artificial neural networks (ANN) can be used in 

geological facies classification to improve 

accuracy and efficiency. ANN models, such as 

deep learning models, have been developed to 

classify rock facies based on various geological 

data, including well logs and seismic attributes. 

These models can learn the lithological 

characteristics of rocks and classify facies based 

on their physical and chemical 

properties (Mohammad et al., 2023). ANN 

models have been trained on different 

optimization algorithms and have illustrated 

more accuracy compared to alternative 

classification techniques like support vector 

machines and nearest neighbor models (Nan et 

al., 2023). Additionally, explainable deep 

learning methods have been explored to provide 

interpretability and retain human intervention in 

the classification process (Ekaterina and Anton, 

2022). These methods use prototype-based 

neural networks to explain the function of the 

seismic facies classifier and help with quality 

control (Jiachun et al., 2023). Overall, ANN 

models offer a powerful tool for geological 

facies classification, improving interpretation 

consistency and efficiency (Miao and Sumit, 

2022). Deep learning models, such as Artificial 

Neural Networks (ANN), offer several 

advantages for geological facies classification. 

One advantage is the ability to process well log 

data, is assumed as the main advantage of the 
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proposed 1D-CNN model (Mohammad et al., 

2023). Another advantage is the ability to 

provide consistent and repeatable results, 

reducing the reliance on human interpreters' 

expertise and experience (Nan et al., 2023). 

Additionally, ANN models can capture long-

term dependencies and spatio-temporal 

relationships in geological procedures, 

rendering them appropriate for analyzing 

gradual variations in lithofacies (Jiachun et al., 

2023). ANN models also allow for the 

interpretation of the underlying basis, providing 

insights into the function of the facies classifier 

and aiding in the quality control process (Miao 

and Sumit, 2022). Overall, ANN models offer 

efficient and effective solutions for geological 

facies classification, improving accuracy and 

interpretability. 
 

3.6. Advantages/Strength of ANN compared to 

traditional methods 
 

Artificial Neural Networks (ANNs) provide a 

number of advantages over rival’s machine 

learning techniques. ANNs can draw fine 

distinctions, patterns, and hidden information 

from data without complex mathematical 

considerations (Вісник, 2023). They are 

effective in both classification and regression 

problems, providing enhanced functionality at a 

reduced processing expense (Mushfiqur and 

Asadujjaman, 2021). ANNs have excelled in 

various learning tasks, such as image processing 

and emotion analysis (Baraniya, 2023). They 

are not impacted by the input variables of the 

model and can recognize important correlations 

that are not visible (Sharon, 2023). 

Additionally, ANNs can be utilized for 

diagnosis and prediction in healthcare, enabling 

personalized treatments and improving 

outcomes and survival rates (Xiaoyu, 2021) 

Overall, ANNs offer the advantage of accuracy, 

efficiency, and the ability to uncover hidden 

patterns and correlations in data.  
 

3.7. Limitations of ANNs compared to traditional 

methods 
 

Artificial Neural Networks (ANNs) have 

limitations in facies classification. One 

limitation is poor generalization with less data 

for training pairs, resulting in reduced accuracy 

(Wang and Alkhalifah, 2023). Another 

limitation is the reliance on human 

interpretation and expertise, leading to 

inconsistency and lack of 

repeatability (Mohammad et al., 2023). 

Additionally, ANNs require labeled data for 

supervised learning, which might be difficult to 

handle large seismic datasets and limited 

annotated samples (Nan et al., 2023). 

Furthermore, ANNs are often considered "black 

boxes" that lack transparency, making it 

difficult to understand how they classify 

seismic facies (Hanpeng et al., 2023). These 

limitations highlight the need for improved 

methods in facies classification that address 

issues of generalization, interpretation, data 

availability, and transparency. 
 

3.8. Recent Case Studies, their study's purpose, 

methodology, and conclusions  
 

Real world case studies on the use of Artificial 

Neural Networks (ANN) in facies 

classifications (Table 1) have been undertaken 

in various geological settings. (Nan et al., 2023) 

developed an end-to-end deep neural network 

(DNN) for consistent facies classification of 

carbonate rocks from image logs, achieving 

77% accuracy on a test set. (Shang et al., 2023) 

used a deep learning image-recognition 

algorithm to automatically recognize facies 

types from core images, achieving a recognition 

accuracy of 91.12%. Another study proposed a 

1D-CNN model trained on well-log data for 

geological facies classification, outperforming 

support vector machine and nearest neighbor 

models (Mohammed et al., 2023). A deep 

neural network-based framework for seismic 

facies classification was proposed by 

incorporating uncertainty analysis and 

achieving accurate classification 

results (Harpreet et al., 2023). Lastly, Li and 

Anderson (2006) investigated the use of CNN 

models for seismic facies analysis and 

introduced the SHAP tool for visualizing the 

contribution of seismic attributes to 

classification results, demonstrating the 

effectiveness of their approach (Jiachun et al., 

2023). But virtually few articles address the 

limitations of using Artificial Neural Network 

(ANN) and the requirements that must be met 

to ensure successful applications.  
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Table 1. Real world case studies on the use of Artificial Neural Networks (ANN) in facies 

Reference Study aim Approach Findings 

Santos et al., 2022 

The study aimed at the 

development of a 

computational system based on 

deep Recurrent Neural 

Networks (RNNs). 

Deep learning neural network 

with a 3D conditional random 

field layer and Pseudo-labeling 

technique with predicted labels 

added to the training set 

The proposed method for 

lithology identification 

outperforms other learning 

approaches. 

The Deep Recurrent Neural 

Network (RNN) approach is 

effective in identifying 

lithofacies patterns. 

 

Ali et al., 2020 

The paper buttressed those 

seismic facies classification is 

important for reservoir 

characterization and evaluation. 

- Artificial Neural Networks 

were utilized to classify 

lithology in carbonate 

reservoirs. 

Multilayer feed forward 

network (MLFN) - 

Probabilistic Neural Network 

(PNN) 

PNN technique classified the 

carbonate reservoir into four 

facies. - MLFN technique 

classified the carbonate 

reservoir into two facies. 

Ali et al., 2020 

The Paper focused on 

lithofacies classification and 

distribution in heterogeneous 

channelized systems using 

Neural network algorithm used 

to predict seismic facies in 

carbonate reservoirs 

Supervised artificial neural 

natural (ANN) algorithms for 

seismic facies classification. - 

Probabilistic Neural Network 

(PNN) for predicting facies in 

carbonate channelized zone. 

The study demonstrated the use 

of neural networks to predict 

seismic facies in a 

heterogeneous channelized 

reservoir. 

 

 

Mingliang, et al., 2020 

The purpose of the paper was 

on seismic and lithologic facies 

mapping using neural networks. 

- It plays an important role in 

hydrocarbon exploration and 

reservoir characterization 

Supervised convolutional 

neural network and semi-

supervised generative 

adversarial neural network 

Seismic facies classification 

using supervised convolutional 

neural networks and semi-

supervised generative 

adversarial networks – 

 

Mapping of seismic and 

lithologic facies from 3D 

reflection seismic data. 

Nan et al., 2023 

The paper proposes using a 

modified U-Net deep neural 

network (DNN) for instant and 

consistent facies classification 

of carbonate rocks from 

acoustic image logs and gamma 

ray logs. 

The approach involved training 

an end-to-end deep neural 

network (DNN) for facies 

classification. The DNN is 

modified from the U-Net model 

for image segmentation. 

The trained DNN achieves 77% 

classification accuracy for the 

test set.  It also provides 

reasonable predictions for 

challenging unlabeled sets. 

Yadigar et al., 2019 

The Paper aims to develop an 

effective deep learning model 

for geological facies 

classification. 

A new 1D-CNN model trained 

on various optimization 

algorithms is proposed and is 

compared with other models 

like RNN, LSTM, SVM, and k-

NN 

The proposed 1D-CNN model 

shows more accurate results 

compared to other models. - 

The model is recommended as 

a suitable and effective 

approach for lithological 

discrimination. 

Santos et al., 2022 

The deep recurrent neural 

network (RNN) approach is 

effective in identifying 

lithofacies patterns. 

Deep recurrent neural networks 

(RNNs) with bidirectional 

long-short-term memory 

(BiLSTM) - XGBoost, Random 

Forest, Naïve Bayes, and 

support vector machine (SVM) 

learning approaches 

Deep recurrent neural networks 

can effectively identify 

lithofacies patterns from well 

logs. - The proposed method 

outperforms other learning 

approaches for lithology 

identification. 

Nan et al., 2022 

The article focused on reservoir 

training deep neural network 

for facies classification. 

An end-to-end deep neural 

network (DNN) for facies 

classification was trained using 

acoustic image logs and gamma 

ray logs. 

Deep neural network (DNN) 

can accurately identify facies of 

carbonate rocks from image 

logs. It provides more 

consistent and higher-resolution 

predictions compared to 

manual classification. 

 

3.9. Future trends and Directions in the Use of 

Artificial Neural Network in Facies Classification 
 

Artificial neural networks (ANNs) are being 

increasingly used in facies classification. One 

future trend is the development of Deep 

Learning models based on ANNs, such as 1D-

CNN and U-Net, that have had encouraging 

outcomes in accurately classifying lithological 

facies from well logs and image 

logs (Mohammed et al., 2023; Nan et al., 2023). 

Another direction is the incorporation of 

uncertainty analysis into the workflow using a 

Bayesian framework, which helps reduce the 

need for human intervention and individual 

biases in interpretation (Harpreet et al., 2023). 
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Additionally, learnable Gabor convolutional 

kernels in CNNs has been proposed to improve 

generalization for facies classification, 

particularly in seismic images with lower 

signal-to-noise ratios (Wang and Alkhalifah, 

2023). These advancements in ANNs offer the 

potential for more efficient, consistent, and 

high-resolution predictions, contributing to 

automatic interpretation of facies from various 

types of logs (Nan et al., 2022). Other future 

trends and directions in the use of Artificial 

Neural Network (ANN) in facies classification 

includes: 

- Integration of Explainable AI (XAI): There is a 

growing need for interpretable and explainable 

AI models in various domains, including 

geosciences. Future research may focus on 

developing ANNs with enhanced 

interpretability to provide clearer insights into 

the decision-making process, making them 

more trustworthy for geoscientific applications 

(Lipton, 2016). 
- Transfer Learning and Pre-trained Models: 

Researchers may explore the effectiveness of 

transfer learning and pre-trained neural network 

models for facies classification tasks. 

Leveraging knowledge from models trained on 

large datasets may enhance the execution of 

ANNs when labeled data in the geoscience’s 

domain is limited (Pan and Yang, 2010). 
- Hybrid Models and Ensemble Approaches: 

Future research might focus on combining 

ANNs combined alongside additional machine 

learning methods or ensemble methods to 

enhance overall model performance. Hybrid 

models that integrate the strengths of different 

algorithms could provide more robust solutions 

for facies classification (Polikar, 2012). 

- Incorporation of Multi-source Data: Future 

directions may involve exploring the integration 

of diverse data sources, such as well logs, 

seismic data, and core samples, into ANN 

models. Creating models that can manage and 

assemble information from multiple sources 

efficiently can lead to more comprehensive and 

accurate facies classification (Al-Rfou, 2016). 

- Uncertainty Quantification: Addressing 

uncertainty in predictions is crucial for 

geological applications. Future research may 

focus on developing ANNs that can provide 

uncertainty estimates, aiding geoscientists in 

establishing better judgments based on the 

model's dependability predictions (Gal and 

Ghahramani, 2016). 
 

3.10. Environmental and ethical considerations in 

geological studies using ANNs  
 

Artificial Intelligence (AI) methods are being 

employed more frequently in Earth Sciences to 

gather important data from large amounts of 

data. However, it is important to consider 

environmental and ethical considerations in 

geological studies using Artificial Neural 

Networks (ANNs). The use of ANNs can help 

eliminate data inhomogeneity and potential 

errors, enabling the determination of the order 

of influence of chemical elements on health 

indicators and the definition of limit values for 

the influential elements. ANNs are an 

appropriate method for analyzing 

environmental and health data in medical 

geochemistry (Dias and Dalton, 2022). 

Additionally, best practices and moving beyond 

off-the-shelf approaches are necessary when 

deriving scientific insights from AI 

methods (Dias and Dalton, 2022). It is crucial to 

ensure that research funding and training 

choices in the Earth and environmental sciences 

equip the next generation of geoscientists with 

the capacity to leverage advances in AI while 

considering sustainability, ethics, and 

trustworthiness (Fajcikova, 2017). 
 

3.11. Research gaps and opportunities for future 

progress in the field of ANN 
 

The most promising research directions in the 

area of artificial neural networks include 

optimization techniques, feature extraction and 

selection, clustering, and the growth of more 

efficient and accurate systems. Research 

directions have been identified through the 

analysis of various articles and 

keywords (Kariri, 2023). Additionally, the 

utilization of artificial neural networks in online 

social network and virtual community research 

has shown promise in determining emotional 

meaning, classifying messages, and making 

recommendations (Walczak, 2022). 

Furthermore, advancements in deep learning, 

explainable AI, transfer learning, and human-AI 

collaboration are expected to drive future 

research in intelligent systems and AI 

techniques (Ismail, 2022). In the specific 

context of artificial neural networks, addressing 

the problems of local minimal, instability, and 

limited maximum accuracy can result in 

enhanced efficiency (Harpreet et al., 2023). 

Finally, in the field of data communication 

networks, there is a need to overcome 
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challenges associated with the analysis of 

networking data through AI/ML, enabling the 

adoption of AI/ML for networking (Jiachuan et 

al., 2023). 

Summary: This review examines the use of 

Artificial Neural Networks (ANNs) to improve 

facies classification in geological studies. It 

discusses the limitations of traditional methods, 

highlights the advantages of ANNs, explores 

methodological approaches, emphasizes the 

integration of multisource data, presents case 

studies, and discusses future directions and 

challenges. Overall, the review underscores the 

potential of ANNs to enhance facies 

classification accuracy and efficiency in 

geological studies. 

 

4. Conclusion 
 

In conclusion, "Enhancing Facies 

Classification in Geological Studies through 

Artificial Neural Networks" A review, 

underscores the significant strides made in 

leveraging advanced computational methods to 

unravel the complexities of geological 

formations. Artificial Neural Networks (ANNs) 

have emerged as powerful tools in the realm of 

facies classification, offering unprecedented 

capabilities to decipher intricate patterns within 

diverse datasets. The application of ANNs in 

geological studies has demonstrated promising 

results, enabling more accurate and efficient 

classification of subsurface formations. The 

inherent capacity of Artificial Neural Network 

(ANN) to learn intricate relationships and 

nuances within geological data has contributed 

to a paradigm shift in how geoscientists 

interpret and understand facies variations. The 

journey into enhancing facies classification 

through ANNs has not only improved the speed 

and precision of geological analyses 

nevertheless it has additionally provided 

opportunities for interdisciplinary 

collaboration. As these networks continue to 

evolve, incorporating advancements such as 

explainable AI and ensemble methods, the 

reliability and interpretability of facies 

predictions are likely to further enhance. 

However, challenges persist, including the need 

for extensive and high-quality labeled datasets 

and the ongoing quest for model 

interpretability. Overcoming these challenges 

will be pivotal for the continued success and 

widespread adoption of ANNs in geological 

studies. In essence, the pursuit of enhancing 

facies classification through Artificial Neural 

Networks is an ongoing and dynamic 

exploration. As researchers delve deeper into 

optimizing architectures, refining training 

methodologies, and addressing interpretability 

concerns, the fusion of geology and artificial 

intelligence promises to unlock unprecedented 

insights into earth's subsurface dynamics, 

ultimately advancing our understanding of 

geological phenomena. 
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