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1. Introduction 

 
Hydrology is the continuous process of 

circulation of water, i.e. the water cycle that 

occurs on Earth. Temperature and precipitation 

are the two important variables within this 

process, that mainly contribute to runoff which 

accumulates as discharge in rivers. Determining 

the amount of discharge primarily depends on 

the availability of the observation series. A 

catchment with a better gauging over a long 

period of time will give a better estimation of the 

amount of discharge compared to a catchment 

that has a lack of data. However, determining the 

amount of discharge is not a simple process due 

to many parameters that are involved in the 

catchment, such as soil properties, infiltration 

rate, lag time, and others. In order to solve the 

problems that are related to the rainfall-runoff 

scheme, hydrological models are used to 

describe the relationship of these schemes and 

simplify the complex process in nature into the 

mathematical forms. 

Hydrological models are used for a variety of 

water resource development activities such as 

agricultural water consumption (Yu et al., 

2015), watershed development (Singh et al., 

1999), flow forecasting (Nicolle et al., 2014) 

and others. In addition, it also can be used for 

gap-filling streamflow data, particularly when 

the missing data rate is less than 10%, as studied 

by Zhang and Post (2018). Generally, there are 

three types of hydrological models that exist: 

conceptual model, physically-based model, and 

empirical model. Each of these kinds of models 

have advantages and disadvantages that depend 

on the case that needs to be solved. There are 

several models that are usually used to describe 

the behavior of rainfall-runoff process, such as 

HBV, HYMOD, Tank model, TOPMODEL, 

VIC, SACRAMENTO, mHM and others. For 

modeling the rainfall-runoff process, various 

models have been developed that are based on 

conceptual representations of the physical 

processes of the water flow lumped over the 

entire catchment area (lumped conceptual type 

of models). 
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These need some parameters in order to 

achieve the result that will match the observed 

series as closely as possible. Besides 

temperature and precipitation, other variables 

are also taken into consideration for particular 

hydrological models (e.g., initial groundwater 

table, soil moisture). 

The great difficulty in modeling is 

parameterization which is the process to 

achieve the value that makes the model as 

close to the observed series as possible. 

Currently, there are few methods of parameter 

calibration which are divided into two 

categories, namely manual and automatic 

calibration. Generally defined, manual 

calibration is done manually and needs 

extremely complete information and the 

process of the model. 

In addition, it is used by those who have 

geological expertise and have extensive 

experience in hydrology, and thus, manual 

calibration is time-consuming (Lee et al., 

2006). Meanwhile, automatic calibration 

depends mainly on an algorithm to find the 

optimal value of a particular parameter. The 

main advantage of automatic calibration is that 

it does not require complete information from 

nature, and it depends only on certain 

important parameters. 

Most automatic calibrations produce a single 

value for a particular parameter of hydrological 

modeling. In other words, chosen a different 

value without a certain range after calibration 

will affect the simulation results. This paper is 

presenting the comparison parameters results 

in between different automatic calibrations. In 

this study, different techniques of automatic 

parameter optimizations were used in order to 

understand the merit and demerit of each of 

these methods. 

The methods consist of Shuffled Complex 

Evolution – University of Arizona (Duan et al., 

1994), Robust Parameter Estimation (Bárdossy 

and Singh, 2008), and Simulated Annealing 

(Kirkpatrick et al., 1983). Each of these 

automatic calibrations used a different 

algorithm to get an optimum of a parameter 

value. 

The structure of the paper is the following: the 

description of the HBV-IWS model and case 

study are provided in Section 2; Section 3 

gives the general description of three different 

automatic calibrations; the results are 

discussed in Section 4.  

 

2. Material and Methods 

 
2.1. Hydrological Modeling 

 

There are many types of conceptual 

hydrological models (e.g. TOPMODEL, HBV) 

that have been developed in different regions 

and climatic conditions. However, among 

these models, HBV gives satisfactory results 

(Gayathri et al., 2015) in describing the 

relationship between the rainfall and runoff 

processes. In this study, the HBV-IWS model 

has been used to determine the relationship 

between rainfall-runoff processes through the 

parameter calibration. The HBV model is a 

conceptual model that was first introduced by 

the Swedish Meteorological and Hydrological 

Institute (SMHI) in the early 1970’s. It is 

predominantly used in Scandinavia and in 

other parts of Europe (Addor & Melsen, 2019). 

Furthermore, this model has been modified in 

some versions. The Institute of Hydraulic 

Engineering (IWS), University of Stuttgart has 

modified the HBV, which includes the 

conceptual routines for calculating snow 

accumulation and melts, soil moisture and 

runoff generation, a runoff concentration 

within the sub-catchment, and flood routing of 

the discharge in the river network (Bárdossy 

and Singh, 2008). Figure 1 shows the HBV-

IWS model structure.  
A general description of the main parts of the 

modified version is as follows: 

Snow accumulation and melt routine 

In this process, a certain value of a threshold 

temperature (TT) was used to determine the 

type of precipitation. If a temperature value (T) 

is below TT, then precipitation falls down as 

snow which leads to snow accumulation. In 

contrast, if a temperature value is above TT, 

then precipitation falls down as rain and the 

accumulated snow is melted which is 

calculated with a degree-day (DD) approach as 

set out in Equation 1. 

 

 TTTDDMELT  .                                  (1) 

with, DD  is a degree-day factor (mm0C-1day-1). 

Furthermore, these values DD and TT will be 

determined by the calibration process.  

Soil moisture accounting 

Soil moisture was calculated by balancing the 

precipitation and evapotranspiration using the 

field capacity and permanent wilting point as 

parameters (Bárdossy & Singh, 2008), as set 

out in Equation 2 to 5.  
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with,  
effP = effective precipitation (mm); 

SM = soil moisture (mm); 

FC = field capacity (maximal amount of 

water the soil can hold) (mm); 

 = parameter in soil moisture routine; 

P = precipitation depth (mm); 

MELT  = melting snow depth (mm); 

APE = potential evapotranspiration (mm); 

EC = parameter in evapotranspiration routine 

(
1C ); 

T = mean temperature ( C ); 

MT = mean monthly temperature ( C ); 

MPE = monthly averaged potential 

evapotranspiration (mm); 

PWP= permanent wilting point (limit for 

potential evapotranspiration) (mm); 

AE = actual evapotranspiration (mm). 

Runoff response routing 

It considers the flow that consists of surface 

runoff, interflow, percolation, and groundwater 

flow also known as base flow. This runoff 

analysis was calculated using the following 

equations. 

 

  ALSkQ .. 100                                         (6) 

ASkQ .. 111                                                   (7) 

ASkQ percperc .. 1                                        (8) 

ASkQ .. 222                                                  (9)  

 

with,  
0Q = surface runoff (m3/s); 

1Q = interflow (m3/s); 

percQ = percolation (m3/s); 

2Q = groundwater flow or base flow (m3/s); 

A = catchment area (km2); 

0k = storage constant for upper reservoir, 

upper outlet; 

1k = storage constant for upper reservoir, lower 

outlet; 

perck = storage constant for percolation from 

upper to lower reservoir; 

2k = storage constant for lower reservoir; 

1S =water level in the upper catchment 

reservoir (mm); 

2S = water level in the lower catchment 

reservoir (mm); 

L = threshold water depth in the upper 

reservoir (mm). 

 

2.2. Study Area 

The study was conducted on the Upper 

Neckar catchment, located in southwest 

Germany (Fig. 2). The study area elevation has 

a range in between 241 to 1010 metres above 

mean sea level (Fig. 3). The Neckar catchment 

has a total area of 4000 km2 and is divided into 

13 sub-catchments (Table 1). Further details 

about the location, please refer to Bárdossy and 

Das (2008); Bárdossy and Singh (2008). In this 

study, daily discharge series from a sub-

catchment Rottweil during the period 1961 - 

1970 was chosen to illustrate the comparison 

of three different calibration methods.   
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Fig. 1. HBV-IWS model structure 

 

 

 
Fig. 2. Neckar catchment area 
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Fig. 3. Elevation of neckar catchment 

 
Table 1. Neckar catchment area 

 

  

No Subcatchment 
Subcatchment 

size (km2) 

Elevation  Mean Discharge 

(m3/s) (m) 

1 Rottweil 456 555-1010 5.1 

2 Oberndorf 235 460-1004 7.9 

3 Horb 427 383-841 14.8 

4 Bad Imnau, Eyach 323 394-988 3.4 

5 Rangendingen, Starzel 118 421-954 1.3 

6 Tuebingen, Steinlach 140 341-882 1.7 

7 Kirchentellinsfurt 618 308-622 46.6 

8 Wannweil, Echaz 135 309-862 2.8 

9 Riederich, Erms 170 317-865 3.0 

10 Oberensingen, Aich 175 278-601 1.3 

11 Suessen, Fils 340 359-859 5.9 

12 Plochingen, Fils 352 252-785 9.8 

13 Plochingen, Neckar 473 241-871 49.9 
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2.3. Model Calibration 
 

In order to get the simulation result as close to 

the observation series as possible, the model 

algorithm should be both logical and 

physically relevant, and the model should 

simulate as accurately as possible the 

streamflow hydrograph (Bergstrom and 

Forsman, 1973). In other words, hydrological 

models need parameters to achieve an accurate 

simulation of discharge that is as close as the 

observed series as possible. In order to have a 

close match with the observed series, 

parameters in hydrological model need to be 

calibrated. According to Gupta et al. (1999), 

the usefulness of hydrologic models for the 

purpose of operational predictions depends on 

how well the models are calibrated. The 

conceptual model generally has a large number 

of parameters which are not directly 

measurable and therefore must be estimated 

through model calibration, i.e. by fitting the 

simulated outputs of the model to the observed 

outputs of the watershed by adjusting the 

model parameters (Duan et al., 1994). In 

addition, to calibrate a hydrologic model, the 

hydrologist must specify values for its 

parameters in such a way that the model’s 

behavior closely matches that of the real 

system it represents (Yapo et al., 1998).  A 

measure of the fit between the simulated and 

observed outputs is called a calibration 

criterion or objective function (Duan et al., 

1994). In this study, the model performance or 

objective function will be examined using the 

Nash-Sutcliffe (NS) coefficient. Related to the 

calibration, in general it consists of manual and 

automatic calibrations. According to Lee et al. 

(2006), manual calibration is mainly needed a 

comprehensive understanding of the catchment 

runoff behavior, the model structure and can be 

extremely time-consuming. Meanwhile, 

automatic calibration involves the use of a 

search algorithm to determine the best-fit 

parameters, and it offers a number of 

advantages over the manual approach with 

respect to calibration running time and 

extensive search of the existing parameter 

possibilities (Lee et al., 2006). Furthermore, 

the goal of calibration is to find those values 

for the model parameters that minimize or 

maximize the specified calibration criterion 

(Duan et al., 1994). Different techniques of 

calibration will give different parameter 

values. There are many types of automatic 

calibration in hydrological modeling, and in 

this study, three different selected automatic 

calibrations were used. It consists of SCE-UA, 

SA, and ROPE. The general description of 

each algorithm is as follows:  
Shuffled complex evolution – University of 

Arizona (SCE-UA) 

The SCE-UA method (Duan et al., 1993) was 

used in this study to obtain the parameter 

values for the simulated discharge of the HBV-

IWS model. According to Yapo et al. (1996), 

SCE-UA is a general purpose of a global 

optimization strategy designed to handle the 

various response surface problems encountered 

in the calibration of non-linear simulation 

models. In addition, this method is a 

probabilistic global search method which is 

intended to combine the strength of the 

simplex search with the concepts of controlled 

random search, competitive evolution, and 

shuffling of complexes or communities 

(Goswami & O’Connor, 2007).  

The SCE algorithm involves the following 

steps (Duan et al., 1993; Madsen et al., 2002): 

An initial sample of parameter sets is randomly 

generated from the feasible parameter space. 

Furthermore, the sample is partitioned into 

several complexes based on the objective 

function values of the evaluated parameter 

sets. Each complex is then evolved 

independently according to the simplex 

method. This is a method used to describe for 

the minimization of a function of n variables, 

which depends on the comparison of function 

values at the (n + 1) vertices of a general 

simplex, followed by the replacement of the 

vertex with the highest value by another point. 

Furthermore, the next step, the evolved 

complexes are shuffled to enable the sharing of 

information and new complexes are formed. 

For more details about the SCE-UA method, 

please refer to Duan et al., 1993; Lee et al., 

2006; Duan et al., 1994. Figure 4 shows the 

flow chart of the SCE-UA algorithm. In 

addition, implementation of the SCE-UA 

method requires the selection of an objective 

function to be optimized with respect to the 

model parameters (Gupta et al., 1999).  
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Fig. 4. The algorithm of shuffled complex evolution – university of arizona (SCE-  UA) 

 

Simulated Annealing (SA) 

Simulated annealing (Kirkpatrick et al., 1983) 

is a global optimization method that mimics 

the behavior of a slow cooling solid in a heated 

bath (Rucker and Ferré, 2005). In addition, it is 

analogous to the physical annealing process 

whereby a material is heated to a temperature 

below its melting point and then cooled slowly 

to allow the molecules to align themselves, 

crystallize and attain a minimum energy state 

(Sumner et al., 1997). The algorithm of SA is 

depicted in Figure 5. 
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Fig. 5. The algorithm of simulated annealing 

 

In general, this automatic optimization is a 

random-search technique that is based on the 

choosing of the objective function. The 

simulated annealing algorithm starts with a 

random parameter.  Each iteration forms a 

random nearby solution.  If this solution is a 

better solution (has a new objective function), 

then it will replace the existing solution.  If it is 

a worse solution, it may be chosen to replace 

the existing solution with a certain probability 

that depends on the difference between the 

initial objective functions. The process will be 

continued until it reaches the sufficient of 

iterations.    
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Robust parameter estimation (ROPE) 

Robust parameter estimation (Bárdossy and 

Singh, 2008) used the concept of data depth 

function in the parameters optimization. A 

depth function is a quantitative measurement 

of how central a point is with respect to a data 

set (Tukey, 1975). In a general illustration, the 

highest depth value is located at the center of 

the data set and low depth values are located at 

the boundary of the data set.  Choosing a depth 

value is a critical point here, where low depth 

values correspond to a weak parameter value 

which affects the calibration results. Figure 6 

illustrates the algorithm of ROPE.  

The idea of the ROPE algorithm (Bárdossy and 

Singh, 2008) can be described as follows: 

A large set of parameters (maximum and 

minimum range of parameters) is generated as 

shown in Figure 6 (a). The model runs for all 

the parameters and the best 10% parameters 

are selected (Fig. 6 (b)). After removing the 

parameter outside the boundary as shown in 

Figure 6 (c), another set of the same number of 

parameters is generated in such a way that has 

higher depth value and located within the 

boundary space as shown in Figure 6 (d). Thus, 

as the model is running, the performance of 

parameter criteria is calculated, and the best 

10% parameters are selected. This iteration is 

continued (Fig. 6(e)) until the predetermined 

number of iterations is over or the variation in 

performance is within a selected range (Fig. 

6(f)). 

There are different types of depth function and 

in this study, the half-space depth function 

(Tukey, 1975) was used. This is because it 

satisfies all four properties of the data depth 

function as mentioned in Liu (1990).  

Objective Function 

A hydrological model is calibrated by 

comparing the observed data series and the 

model (Diskin and Simon, 1977). There are 

many different objective functions that can be 

used to determine the performance of the 

models compared to observed data (e.g. root 

mean squared error, correlation coefficient, 

sum of squared deviation, peak error), and the 

typical objective function that is used in 

hydrological model is the Nash-Sutcliffe 

coefficient (Nash & Sutcliffe, 1970).  

 

    

 






















N

i

oio

N

ii

isio

m

QtQ

tQtQ

R

1

2

2

2 1                       (10) 

 

with, 2

mR = Nash-Sutcliffe coefficient (-); 

 io tQ  = observed discharge (m3/s); 

 is tQ  = simulated discharge (m3/s); 



oQ = mean observed discharge (m3/s); 

N  = number of time steps. 
2

mR
 
can range from  to 1 (a perfect match 

between observation and simulation). An 

efficiency of lower than zero indicates that the 

mean value of the observed time series would 

have been a better predictor than the model 

(Krause et al., 2005). Furthermore, the Nash-

Sutcliffe coefficient leads to a good estimation 

of model performance during the peak flow 

and the Nash-Sutcliffe with a logarithmic 

function gives a good estimation during the 

low flow.   

 

3. Results and discussion 

 

Three different selected automatic 

calibrations were investigated in this study in 

order to compare and determine which one 

shows the most reliable result based on the 

objective function value. Table 2 shows eight 

parameters that were used for the calibration. 

These parameters were chosen due to the 

sensitivity and dominant process in 

hydrological modeling HBV-IWS. 

Furthermore, all three automatic calibrations 

used the same initial parameter value for lower 

and upper boundaries. 
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Table 2.  Parameters selected for calibration using HBV-IWS 

No Parameter Unit 

1 L Depth of upper reservoir mm 

2 K0 Surface flow storage constant 1/d 

3 K1 Interflow storage constant 1/d 

4 K2 Baseflow storage constant 1/d 

5 KPER Percolation storage constant 1/d 

6 TT Threshold temperature 0C 

7 DD Degree day factor mm/0C d 

8   Model parameter - 

 
SCE-UA 

This method uses two numbers of the 

complexes and the optimization of parameters 

is completed when the criterion value has not 

been changed. All the parameter values after 

the calibration fall as a single value in between 

the initial values, as shown in Table 3. 

Furthermore, Table 4 shows the statistical 

descriptive result of the observed and model 

discharge series for the Rottweil sub-

catchment. One can clearly observe that a 

model performance in a mean value is higher 

by 0.34 m3/s than in the observation. 

Meanwhile, for standard deviation, it shows 

0.90 m3/s lower in the model than in the 

observation, as shown in Table 4. 

   
Table 3. Optimal parameter values with SCE-UA 

Parameter 

Initial Parameter Value 

Value 

Lower Boundary Upper Boundary 

L 1 40 14.90 

K0 0.5 20 0.92 

K1 5 50 5.69 

K2 10 1000 999.46 

Kper 20 100 20.01 

TT -1 1 -0.72 

DD 1 3 1.58 

  1 6 1.09 

 
Table 4. Statistical descriptive result using SCE-UA 

Sub. Catchment Obsv. Mean (m3/s) 
Obsv. Std 

(m3/s) 

Mod. Mean 

(m3/s) 
Mod. Std (m3/s) NS 

Rottweil 5.42 6.93 5.76 6.03 0.70 
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SA 

In order to get a reasonable parameter value, 

this calibration method uses an objective 

function of random parameters that will be 

replaced with the new objective function. The 

same numbers of parameters with other 

optimization approaches were used in this 

method. The optimal value as the result of a 

model performance gives a single value based 

on the criterion of the lower and upper 

boundaries. Table 5 shows the optimal 

parameter values which fall in between the 

lower and upper values. Furthermore, Table 6 

shows the statistical results from this 

calibration method. It shows that in the mean 

value, the model has 0.09 m3/s higher than the 

observed discharge. However, in the standard 

deviation, the observed discharge was higher 

than the model discharge. 

 
Table 5. Optimal parameter values with SA 

Parameter 

Initial Parameter Value 

Value 

Lower Boundary 
Upper 

Boundary 

L 1 40 11.20 

K0 0.5 20 1.59 

K1 5 50 6.50 

K2 10 1000 169.30 

Kper 20 100 20.43 

TT -1 1 0.40 

DD 1 3 2.48 

  1 6 1.01 

 

Table 6. Statistical descriptive result using SA 

Sub. Catchment 
Obsv. Mean 

(m3/s) 

Obsv. Std 

(m3/s) 

Mod. Mean 

(m3/s) 
Mod. Std (m3/s) NS 

Rottweil 5.42 6.93 5.51 6.23 0.72 

 

 

Fig. 6. The algorithm of robust parameter estimation (Bárdossy and Singh, 2008) 
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ROPE 

This method is based on choosing the best 

parameter sets in each time step within the 

boundary space. It starts with generating the 

random parameter and is used for a further 

iteration until a model produced is close to the 

observation. In this analysis, the ROPE method 

starts with generating 10000 random 

parameters and continues by identifying a good 

parameter using the concept of the depth 

function. This method is continued with a four-

time step iteration in order to find a good set of 

parameters. As described before in Section 3 

about the algorithm for choosing the best 

parameter sets, the results are given within the 

range of maximum and minimum values, 

instead of a single value. These results are 

based on the monotonic function having by the 

depth function in classifying the depth values. 

It shows the high depth values are located 

close to the center of the datasets and low 

depths are located at the boundary of the 

datasets. Thus, the ROPE gives a space of 

parameters after calibration based on the 

ranges of the ‘deepest’ depth values. The result 

of ROPE method is shown in Table 7. It is 

clearly shown that each parameter has their 

own ranges between maximum and minimum 

values and they are fall in between the lower 

and upper boundaries. In addition, it is 

interesting to note that some parameter values 

from SCE-UA and SA are located in between 

maxima and minima values of ROPE after 

calibrations. This can be seen, for instance, at 

parameter K1, as depicted in Figure 7. 

 

Table 7.  Optimal parameter values with ROPE 

Parameter 

Initial Parameter Value Value 

Lower 

Boundary 

Upper 

Boundary 
max min std 

L 1 40 18.72 5.56 2.40 

K0 0.5 20 6.84 2.02 0.67 

K1 5 50 44.57 5.15 7.75 

K2 10 1000 838.99 199.61 118.25 

Kper 20 100 89.09 34.32 9.79 

TT -1 1 0.49 -0.55 0.15 

DD 1 3 2.72 1.42 0.23 

  1 6 1.41 1.02 0.07 

 

 
Fig. 7. Model parameter values from different automatic calibrations 
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Related to the statistical descriptive of this 

method, Table 8 shows the observed discharge 

with 5.42 m3/s is located in between the 

maxima and minima model values, 6.48 m3/s 

and 3.42 m3/s, respectively. The same thing is 

applied to the standard deviation value. In the 

context of the objective function 2

mR
 

(see 

Table 8), SA shows closer to the observed 

series with a coefficient of 0.72, followed by 

SCE-UA (0.70) and ROPE (0.69). However, 

for the first two optimizations, the model 

parameters have no option to choose any other 

value, instead of a single value obtained from 

the calibration. Meanwhile, ROPE gives the 

flexibility of choosing any parameter values 

that range in between maxima and minima 

values. In other words, choosing any value 

within these ranges or space of parameter 

values, will not influence a significant change 

in the objective function. Thus, the model 

discharge will have confidence in interval 

values. Table 9 shows the highest and lowest 

discharge series in Rottweil with 114.64 m3/s 

and 0.45 m3/s, respectively. For the first 

discharge, it shows that all optimization 

techniques have the highest model discharges 

which are smaller than in the observed series 

for the period 1961 – 1970. Meanwhile, for the 

lowest discharge, it shows that ROPE has the 

smallest value of 0.22 m3/s compared to the 

other two techniques and observation. The 

hydrograph between the observed discharge 

series and discharge simulation from three 

different automatic calibrations are depicted in 

Figure 8. One can clearly observe that there are 

some parts where model perform well with the 

observed series and others perform less, 

particularly for the peak flow. The possible 

reasons of this situation might be caused by the 

numbers of sensitivity parameters, the input 

values, and the model structure itself. In 

addition, Figure 8 shows of how closely the 

observation series and model. The calibration 

of model parameters through SCE-UA and SA 

give over and under estimate of the model with 

respect to the observation series. Meanwhile, 

ROPE gives a good model performance due to 

maximum and minimum value of a model 

compared with the observed discharge series. 

In other words, in general, it shows that the 

observed series are located in between the 

maximum and minimum of the discharge 

simulation (model). This calibration analysis is 

indicating a promising result of analysis and 

shows a good estimation and performance of 

the model parameter values.  

 

Table 8. Statistical descriptive result using ROPE 

 

Table 9. Highest and lowest discharge in sub-catchment Rottweil period 1961-1970 

  Simulation Discharge (m3/s) Observation Discharge (m3/s) 

Highest (m3/s) 

SCE-UA 83.27 

114.64 SA 107.7 

ROPE Max 106.93 

Lowest (m3/s) 

SCE-UA 0.46 

0.45 SA 0.52 

ROPE Min 0.22 

 

Sub. 
Catchment 

Obsv. 

Mean 

(m3/s) 

Obsv. Std 
(m3/s) 

Mod. Max 
(m3/s) 

Mod. Std 

Max 

(m3/s) 

Mod. Min 
(m3/s) 

Mod. Std 

Min 

(m3/s) 

NS 

Max Min Mean 

Rottweil 5.42 6.93 6.48 7.25 3.42 4.53 0.70 0.67 0.69 
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Fig. 8. The hydrographs between the observation and model discharge with different automatic optimization techniques 

 
4. Conclusion 

 

The great difficulty in modeling is 

parameterization of any model. In this study, 

different techniques of automatic calibration 

were used in order to understand the merit and 

demerit of each of the parameter optimization 

methods. The study was conducted in the sub-

catchment Rottweil that is located in the Upper 

Neckar catchment, Germany. The result was 

analyzed to make a strategy for selecting the 

most accurate optimization of the conceptual 

model. It has been found that the parameters 

obtained by different optimization algorithms 

can result in different parameter sets. The SA 

method seems to be more effective than the 

other automatic calibration, due to the Nash-

Sutcliffe coefficient indicating a good 

performance when compared to the observed 

data. However, the ROPE method seems to be 

more robust, because this method gives a range 

of parameters after calibration of the 

hydrological model, instead of single 

parameter sets in the others optimization. 

Furthermore, ROPE can be used to improve 

the confidence in forecasting because it gives a 

better approach to the hydrological model. 
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