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1. Introduction 

 

Reservoir water quality degradation is a 

common problem caused by nutrients from 

upstream watersheds. Mitigating these water 

quality problems requires effective policies to 

manage both the reservoir and upstream 

watersheds. Such policies can be realized by (1) 

optimizing Best Management Practices (BMPs) 

(Arabi et al., 2008) in the upstream watershed to 

reduce the burden of nutrients and (2) adapting 

reservoir operation policies such as selective 

withdrawal. Coupled simulation and 

optimization models can help implement a 

framework that establishes water quantity and 

quality objectives for optimal reservoir 

operational strategies and optimal selection and 

placement of BMPs in the watershed. In recent 

years, different simulation-optimization models 

have been used to reduce pollutant loads at 

watersheds through management strategies 

(Arabi et al., 2006; Maringanti et al., 2008; Kaini 

et al., 2012; Alami et al., 2017). 

 

In these studies, a hydrology model was coupled 

with an optimization model to simulate the 

effects of the watershed management strategies 

on watershed outflow quality, while the effect 

of the watershed management strategies on the 

reservoir water quality was not examined. Other 

studies have also been carried out by integrating 

reservoir simulation models with an 

optimization algorithm to derive reservoir 

optimal policies in regards to water quantity and 

quality objectives (Dhar and Datta 2008; 

Shirangi et al., 2008; Schardong et al., 2012; 

Castelletti et al., 2008, 2014; Soleimani et al., 

2016; Saadatpour et al., 2017). The mentioned 

literature considered one of the two control 

strategies (i.e., the reservoir operational 

strategy) to manage water quality issues in 

reservoirs while the entry of the point and non-

point source pollutants into the reservoirs is the 

main cause of reservoirs health problem. Some 

previous studies linked watershed and reservoir 

models to simulate the effects of the watershed 

management strategies on reservoir water 

quality. 
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Wang et al. (2005) coupled Artificial neural 

network Agricultural Non-Point Source 

(AnnAGNPS) watershed and Hydrologic 

Simulation Program Fortran (BATHTUB) lake 

models to simulate response to changes in 

different watershed landuse and management 

scenarios. Wu et al. (2006) used a watershed 

model (HSPF) and a receiving water quality 

model (CE-QUAL-W2) to evaluate alternative 

(BMPs) strategies at a watershed level and the 

resultant receiving water quality. Karamouz et 

al. (2010) linked the Soil and Water 

Assessment Tool (SWAT) to a system 

dynamic model to assess BMPs 

implementation in the watershed and reservoir 

phosphorus concentration in the Aharchai 

River watershed. To develop a cost-effective 

optimization model, a linked watershed-

reservoir model was coupled with genetic 

algorithm to find optimal selection and 

placement of BMPs in the watershed with 

minimum cost. The approach could reduce the 

phosphorus concentration of the reservoir to 

the standard level. Ciou et al. (2012) developed 

an optimization model for finding the optimal 

location of structural BMPs at the watershed 

scale for the Feitsui Reservoir and its 

watershed in northern Taiwan. They integrated 

a watershed water quality simulation model 

(HSPF) with a reservoir water quality model 

(CE-QUAL-W2). The integrated watershed-

reservoir model was coupled with genetic 

algorithm to design cost-effective combination 

of BMPs. The outcomes obtained from the 

integrated model efficiently showed its 

capability in improving reservoir water quality 

by adopting watershed approach. Yazdi et al. 

(2017) developed a watershed-reservoir system 

to the Seimare reservoir and its upstream 

watershed to evaluate 6 water quality 

protection scenarios in the watershed to control 

the upstream point and non-point sources of 

pollution. Overall, the aforementioned 

investigations were concerned with only 

watershed management strategies to control 

reservoir water quality while using multi-level 

outlets and improved reservoir operation rule 

may further enhance water quality. The 

literature review revealed that watershed 

management or reservoir operation approaches 

has been used separately, while none employed 

both watershed management and reservoir 

operation simultaneously to manage reservoir 

water quality. Development of a systematic 

approach to water quality and quantity 

management in the reservoir is to model 

watershed nutrient loading and link the 

watershed model to a reservoir model, and then 

to couple the linked watershed-reservoir 

system with an optimization algorithm to 

assess the many combined management 

alternatives to find a set of desirable decisions. 

The main contribution of the current research 

is linking a time continuous distributed 

watershed model (i.e., SWAT) to a two 

dimensional hydrodynamic and water quality 

model (i.e., CE-QUAL-W2) to develop a direct 

cause-and-effect relationship between 

upstream activities and downstream water 

quality, and optimizing the BMPs and the 

reservoir operational strategies simultaneously 

with a multi-objective algorithm (i.e., PSO). 

The proposed approach was applied to the 

Alavian reservoir and its upstream watershed 

in the northwestern part of Iran. In order to 

assess the effectiveness of the two control 

strategies (i.e., reservoir operational strategies 

through selective withdrawal scheme, and 

watershed control strategies) results from 

proposed methodology was compared with 

current conditions of the reservoir. A brief 

description of the materials and methods 

consisting of the case study area, proposed 

methodology, simulation models, model 

performance criteria, and optimization tools 

are presented in Section 2. The problem 

formulation (section 3) is followed by the 

application of the models and detailed analysis 

of the results and finally conclusions are 

presented. 

 

2. Material and Methods 

 
2.1. Case Study 

 

Alavian dam and its upstream watershed 

are located in the East Azerbaijan Province in 

the northwest of Iran, and are a part of the 

Urmia Lake basin. The watershed is located 

between 37°11'- 38°28'N and 46° - 46°25'E, 

covering a catchment area for the dam of about 

313 km2 up to the Dam (Figure 1). The height 

of the dam is 70 m from the river bed and 80 m 

from the dam foundation. The Alavian 

reservoir has a volume of 60 million cubic 

meters (MCM) and a surface area of 2.7 km2 at 

a normal water level. Two outlets of this dam 

are located at 1530 m and 1545 m above sea 

level and can be used for selective withdrawal. 

Alavian dam was constructed on the Sufichay 

file:///G:/thesis/paper/paper/2005_wanghugginsfrees.pdf
file:///G:/thesis/paper/wu2007.pdf
file:///H:/BMP/Paper_BMP/New%20folder/Optimization%20of%20Watershed%20Control%20Strategies%20for%20Reservoir.pdf
file:///H:/BMP/Paper_BMP/New%20folder/Optimization%20of%20Watershed%20Control%20Strategies%20for%20Reservoir.pdf
file:///G:/thesis/paper/paper/ciou2012.pdf
file:///G:/thesis/paper/paper/10.1007_s11269-017-1627-4.pdf
file:///G:/thesis/paper/paper/10.1007_s11269-017-1627-4.pdf
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River in order to provide municipal drinking 

water in Maragheh City, and water for 

irrigation of 10,000 ha of agricultural lands of 

Maragheh plain and its surrounding gardens. 

Finally it supplies the hydroelectric power 

plant (Mahab Ghodss, 1990). During recent 

years, reservoir water quality has been 

degraded due to the entry of excessive 

nutrients into the reservoir which could cause 

reservoir eutrophication. Total nitrogen to total 

phosphorus ratio (TN: TP) has been used as an 

indicator for estimating which nutrient limits 

algal growth. Ratios greater than 10:1 are 

indicative of phosphorus limitation (U. S. 

EPA, 2000). The average ratio of (TN: TP) in 

the Alavian reservoir water was between 12 

and 124 based on the available data. 

Consequently, phosphorus is the limiting factor 

in the reservoir. Total phosphorus was 

approximated by phosphate (i.e., dissolved 

phosphorus), as other types of phosphorus, 

such as suspended phosphorous was 

insignificant in the reservoir. In this study, 

SWAT model was used to simulate the surface 

runoff and transportation of nutrient loads in 

the watershed and CE-QUAL-W2 model was 

used to simulate the reservoir water quality. 

Digital elevation model (DEM) from the 

Iranian surveying organization with 1:25000 

scale, the FAO–UNESCO global available soil 

data with 1:5000,000 scale, landuse map of the 

watershed generated using MODIS satellite 

imageries and climate data were used to setup 

SWAT model. The weather-generator 

variables produced by the Iranian 

Meteorological Organization included daily 

rainfall, daily minimum and maximum air 

temperature, and wind speed which were 

available at Maragheh synoptic station. The 

measured data for the water flow and water 

quality during the years 1999-2012 at 

TazehKand-Alavian station were used for 

calibration and validation of SWAT model. To 

decrease the initial condition impacts, first four 

years of the simulation from 1999 to 2002 

were considered as a warmup period. The 

calibration period was considered from 2003 to 

2008 and the validation period from 2009 to 

2012. Temperature and water quality data were 

collected at 3 sites within the reservoir from 

October 2006 to July 2009 for 23 different 

times to support CE-QUAL-W2 model 

calibration and validation. The calibration 

period was from October 2006 to April 2007 

and the validation period from May 2007 to 

July 2009. 

 

 
Fig. 1. Geographical location of Alavian reservoir watershed 

 
2.2. Proposed Methodology 

 

The proposed methodology in this study 

contains two steps: simulation and coupled 

simulation-optimization. Simulation step 

consists of calibration of watershed model 

(SWAT), reservoir water quality model (CE-

QUAL-W2), and integrating watershed-

reservoir approach through an intermediate 

program (this program extracts required 
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outputs from SWAT model and converts them 

into acceptable CE-QUAL-W2 inputs). DEM, 

landuse data, soil data, and climate data are the 

input data to set up SWAT model. Observed 

flow and nutrient concentrations were used in 

SWAT model calibration and validation. CE-

QUAL-W2 model needs the reservoir 

bathymetry data, initial conditions, and 

boundary conditions to simulate reservoir 

water quality. Flow and converted nutrient 

loads from the calibrated SWAT model and the 

observed outflow from the reservoir were used 

as the boundary conditions. The values of the 

reservoir water quality parameters at time t=0 

were set as the initial conditions. In coupled 

simulation-optimization step, the calibrated 

and linked (SWAT)-(CE-QUAL-W2) 

simulation system was coupled with Multi-

Objective Particle Swarm Optimization 

(MOPSO) algorithm to find optimal strategies 

(Figure 2). In the following sections, all main 

components of Figure 2 are explained in 

details. The Pareto Front as a set of non-

dominated solutions in multi-objective 

optimization problems would be analyzed to 

assess the efficiency of the two control 

strategies (reservoir operational strategy 

through selective withdrawal scheme and 

watershed control strategy). 

 

 
Fig. 2. the calibrated and linked (SWAT)-(CE-QUAL-W2) simulation system was coupled with Multi-Objective Particle Swarm 

Optimization (MOPSO) algorithm to find optimal strategies. 

 
2.3. Watershed Modeling 

 

SWAT is a time continuous, semi-distributed 

and physically based watershed scale model, 

which has been developed by USDA 

Agricultural Research Service (Arnold et al., 

1998). SWAT can simulate the flow, sediment, 

and nutrient loads; however, it needs various 

sources of information and empirical 

parameters. Climate data, landuse and soil 

maps, and DEM are essential data to setup 

SWAT model (Figure 1). In this model, the 
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watershed is firstly divided to several sub-

basins based on stream network, and then each 

sub-basin is divided into some hydrological 

response units (HRU) with unique soil, slope, 

and landuse combinations. SWAT uses 

QUAL2E model (Brown and Barnwell, 1987) 

to simulate and route nutrients in the stream. In 

this study, SWAT model was selected due to 

its widespread application and its capability to 

predict the impact of watershed management 

practices and climate change on hydrology, 

sedimentation, and nutrient loads, which has 

been confirmed in former studies (Arabi et al., 

2006; Gitau et al., 2006; Parajuli, 2012; Zhu et 

al., 2015). Integration of different structural 

and non-structural BMPs is possible in SWAT 

model. In this study 4 different structural 

BMPs were applied to control pollutants load. 

i) Detention pond (DP) is placed in sub-basin 

to retain flow and can reduce pollutants load. 

The fraction of the sub-basin drains to the pond 

(Pnd-Fr), pond area (Pnd-Psa) and pond 

volume (Pnd-Pvol) are parameters related to 

DP in SWAT. ii) Filter strips (FS) are designed 

in HRU and can decrease sediment and 

pollutants. In order to represent FS in SWAT 

model, the width of edge of field filter strip 

(FILTERW) is modified. iii) Parallel terraces 

(PT) designed in HRU, are presented to the 

model by modifying the soil conservation 

service curve number (CN2), Universal soil 

loss equation (USLE) support practice factor 

(USLE-P) and average slope length 

(SLSUBBSN) parameters (Arabi, 2008). iv) 

Grade stabilization structures (GSS) are 

applied to decrease the channel slope; 

accordingly sediment trapping would be 

increased. GSS is presented to SWAT with 

modifying the channel segment  

and channel erodibility factor . 

The unit costs of four BMPs were estimated 

based on current implementation costs in the 

region which are stated in the bids and 

contracts documents (Table 1). 

Table1. The unit cost of four BMPs applied in this study 

BMP Description Unit Unit Cost (US$*) 

1 Detention ponds (DP) ha-m 5000 

2 Grade Stabilization Structures (GSS) Each 8000 

3 Parallel Terraces (PT) ha 1400 

4 Filter Strips (FS) ha 650 

*Current Exchange Rates 

 
2.4. Reservoir Water Quality Modeling 

 

CE-QUAL-W2 is a two dimensional, 

longitudinal/vertical, hydrodynamic, and water 

quality model, developed by the US Army 

Engineer Research and Development Center. 

Due to the lateral homogeneity assumption, it 

is applicable for long and narrow water bodies. 

The model uses finite difference numerical 

method to solve governing equations and can 

simulate water surface elevations, velocities, 

temperatures, and water quality. The 

capabilities of model include long term 

simulations, head boundary conditions, 

multiple branches and water bodies, variable 

grid spacing, multiple inflows and outflows, 

ice cover calculations, selective withdrawal 

calculations, and time-varying boundary 

conditions. CE-QUAL-W2 has been used for 

the past two decades as a tool for water quality 

managers to evaluate the effects of 

management strategies on many different 

waterbodies (Cole and Wells, 2015). 

 
2.5. Model performance criteria 

 

Four criteria were used to assess the 

performance of the SWAT and CE-QUAL-W2 

model.  

- Nash Sutcliffe coefficient of efficiency 

(NSE), Equation 1, is a normalized statistic 

that determines the relative magnitude of the 

residual variance compared to the measured 

data (Nash and Sutcliffe, 1970).  

                      (1)  

in which  is the mean of the observed 

values;  and  are the observed and 

simulated values respectively; and n is the 
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number of values. The model performance is 

considered to be good for values of NSE>0.75, 

while for values of 0.36<NSE<0.75, model 

performance is considered to be satisfactory 

(Motovilov et al., 1999).  

- Percent bias (PBIAS), Equation 2, is a 

measure of the average tendency of the 

simulated values to be higher or lower than 

their observed values. The optimal PBIAS 

value is 0; positive and negative values of 

PBIAS indicate a model bias toward 

underestimation and overestimation, 

respectively (Gupta et al., 1999).  

                 (2) 

The performance rating for PBIAS is 

constituent specific. Model performance can be 

evaluated as satisfactory if PBIAS ± 25% for 

streamflow, PBIAS ± 55% for sediment, and 

PBIAS ± 70% for nitrate nitrogen (N-NO3), 

and mineral phosphorus (P-PO4) (Moriasi, 

2007). 

- RMS error (RMSE)-observations standard 

deviation ratio (RSR) as:  

 

        (3) 

where  is the standard deviation of the 

observed values. The optimal  value is 0. 

The model performance is considered to be 

unsatisfactory for values of RSR>0.7 (Moriasi, 

2007). 

- Absolute Mean Error (AME) as: 

 

                                    (4) 

where  and  are the observed and 

simulated values, respectively; and n is the 

number of values. The model evaluation 

criteria should be adjusted based on the quality 

and quantity of measured data, evaluation time 

step, and project scope and magnitude. 

Typically, model simulation results are poorer 

for shorter time steps than for longer time steps 

(Moriasi, 2007). In this study, observed flow, 

total suspended solids, nitrate nitrogen (N-

NO3), and mineral phosphorus (P-PO4) values 

were considered to evaluate SWAT model 

performance for daily time steps. Historical 

measured daily water surface elevation, water 

temperature, and water quality data were used 

to assess CE-QUAL-W2 model performance. 

 
2.6. Multi-Objective Particle Swarm Optimization 

 

Because of the multiplicity of decision 

variables, the nonlinearity, and complexity of 

the cause-effect relationships among water 

quality parameters, and time delay between 

cause and effect in water quality issues, the use 

of a linked watershed-reservoir model in the 

coupled simulation-optimization approach can 

be an appropriate tool for providing optimal 

reservoir operation and determining 

combination of BMPs in the watersheds. As a 

result, in this study, Multi-Objective Particle 

Swarm Optimization (MOPSO) algorithm was 

employed to develop a trade-off curve (i.e., 

Pareto Front) between the defined objective 

functions.  

Particle Swarm Optimization (PSO), 

introduced by Kennedy and Eberhart (1995) 

has shown to be a powerful competitor to other 

evolutionary algorithms (Sedki and Ouazar, 

2011; Kamali and Niksokhan, 2017). PSO is a 

population-based algorithm in which optimal 

solutions are searched through a combination 

of individual learning and social behavior. In 

PSO, the movement of the particles toward the 

optimum is governed by equations similar to 

the followings: 

 

         (5) 

                     (6) 

where  is inertia weight, ,  are random 

variables between [0,1], and ,  are 

acceleration constants. 𝑥, and  are the 

position and velocity of particle  in iteration , 

respectively. , and  are personal 

best positions of each particle and global best 

position of all particles, respectively. A 

number of multi objective extensions of PSO 

algorithm have been proposed since late 1990s. 

This study implements an approach proposed 

by Coello et al. (2004). They used a global 

repository in which non-dominated solutions 

are stored. Additionally, they proposed an 

adaptive grid approach to choose a solution 

from repository as a leader for each particle to 

guide the search. 

 

 

file:///H:/BMP/Paper_BMP/New%20folder/Validation%20of%20a%20distributed%20hydrological%20model.pdf
file:///H:/BMP/Paper_BMP/New%20folder/Suitability%20of%20SWAT%20for%20the%20Conservation%20Effects%20Assessment.pdf
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2.7. Problem Formulation  

 

Usually, simulation models are developed to 

achieve the answer of ‘what if’ and 

optimization models answer the question of 

‘what is the best’ under a given set of 

conditions. Consequently, the optimal water 

resource management alternatives may not be 

attained using either simulation or optimization 

techniques alone. Thus, the combined use of 

simulation and optimization models is 

important to address both questions 

simultaneously (Singh, 2014). In this study, a 

multi-objective optimization algorithm was 

used to manage the reservoir water with 

quality and quantity objectives as: 

   (7) 

                          (8) 

 

 (9) 

 
(10) 

 
Subject to the following constraints: 

(11) 

                                  
(12) 

 
(13) 

 
(14) 

 
(15) 

  

where,  is the total cost of BMPs 

applied in the watershed.  is the cost 

of a  type of BMP applied in sub-basin  or 

HRU .  and  are quality and 

quantity objective functions.  is the 

reservoir outflow phosphorus concentration at 

day , and  is the concentration of 

standard phosphorus. According to USEPA 

(2000), the standard phosphorus concentration 

for eutrophic level in the reservoir was set as 

0.02 mg/L.  is the downstream 

water demands at month .  is the 

allocated water to the downstream demands at 

month  (decision variable). , 

, and  are the watershed 

discharge, mineral phosphorus load, and nitrate 

nitrogen load at day  input to the reservoir 

which are calculated by SWAT model based 

on BMP parameters (decision variables) in 

Table 2.  is the bottom outlet withdrawal 

ratio (decision variable).  is 

calculated by CE-QUAL-W2 model based on 

the , , and  

which are simulated by SWAT model and also 

based on  and .  

is municipal water demand.  is the reservoir 

storage at day .  and  are 

minimum and maximum reservoir storage. 

 and  are releases from two outlets. 

The quality objective function , 

which determines the reservoir outflow 

phosphorus concentration violation from the 

standard phosphorus concentration, is expected 

to minimize the reservoir outflow phosphorus 

concentration.  is one of the decision 

variables in this study which affects reservoir 

outflow water quality, and also downstream 

water demand satisfactions. The quantity 

objective , which measures the 

downstream water demand deficit, is 

considered to increase the downstream 

agricultural and environmental demand 

satisfaction. The defined problem in Equation 

7 was solved for a 6-year time horizon.  
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Table 2. BMP type and decision variables used in the watershed model 

BMP TYPE Parameters 
SWAT input 

file 

Pre-BMP (from 

calibration) 
Post-BMP 

Detention Pond 

Pnd-Fr .pnd 0 0.9 

Pnd-Psa .pnd 0 (0.005, 0.0075) of each subbasin area 

Pnd-Pvol .pnd 0 Depth of Pnd (2, 3 (m)) * Pnd_Psa 

Filter Strip FILTERW .hru 0 20 

Parallel terraces 

CN2 .mgt varies (CN2)-6 

USLE-P .mgt 0.35-0.5 a 

SLSUBBSN .hru 10-150 a 

Grade Stabilization 

Structure 

CH-S2 .rte varies Reduced by 10% 

CH-EROD .rte 0.44 0.001 (nonerodable) 

a: (Arabi et al., 2008) 
 

Figure 3 shows the flowchart of the proposed 

(SWAT)–(CE-QUAL-W2)-(MOPSO) model. 

The integrated model was developed in a way 

that it can apply the principles of the 

simulation–optimization approach, where the 

optimization model repeatedly calls the 

simulation model to find the optimum solution 

of the problem and to simulate the state 

variables. The whole solution procedure is 

sequentially reiterated to find a new solution 

until the global (or near global) solutions are 

achieved. In this study, reaching to the 50th 

iteration was considered as the stopping 

criterion.  

 

 
Fig. 3. Flowchart of the developed simulation-optimization part 
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2.8. Application of the Model 

 
2.8.1. Model Setup  
In this study, the watershed was divided into 

41 sub-basins using a threshold value of 400 

ha. These sub-basins were further divided into 

144 HRUs based on the landuse, soil, and 

slope. The SWAT model was calibrated for the 

watershed in daily time step using flow and 

total suspended solid load, nitrate nitrogen (N-

NO3) and mineral phosphorus (P-PO4) data 

observed at the TazehKand-Alavian station, 

located at the outlet of the watershed. The 

main objective of SWAT model set-up was to 

simulate nutrient loads entry into the reservoir. 

There was a data limitation in model 

calibration of sediment and nutrients. 

Availability of observed sediment and 

nutrients data were one of the major limitations 

as only 87 and 20 sediment data were used for 

calibration and validation periods, respectively. 

Also only 40 and 20 nitrate nitrogen (N-NO3) 

and mineral phosphorus (P-PO4) samples were 

used respectively for calibration and validation 

periods. The sequential uncertainty fitting 

algorithm (SUFI-2) was used for calibration 

and validation of SWAT model (Abbaspour et 

al., 2007). Model performance measures for 

simulations of flow, total suspended solids, 

nitrate nitrogen (N-NO3) and mineral 

phosphorus (P-PO4) in calibration and 

validation periods are presented in Table 3. 

The model performance was generally 

satisfactory for calibration and validation 

periods. Figure 4 shows simulated and 

observed flow time series. Comparing two 

series in the Figure 4 shows that the daily 

simulated flows almost match the daily 

observed values. This being said, the model 

underestimated the peak flows. This could be 

contributed to errors in input data, errors in 

observed data, or errors in the model itself. 

 
Table 3. SWAT model performance measures for simulations of flow, total suspended solids, Nitrate nitrogen (N-NO3) and 

Mineral phosphorus (P-PO4) in Calibration and validation periods 

 
Fig. 4. Observed and simulated daily flow time series at the watershed outlet 

 
Based on the shape and topography of the 

reservoir, it was configured as a one-branch 

and divided into 16 segments with a length of 

110 to 250 m. Each segment was divided into 

33 layers with 2 m depth in the water column 

for modeling with CE-QUAL-W2. Watershed 

flow, sediment, and nutrient loads from the 

SWAT model were extracted and converted 
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into acceptable CE-QUAL-W2 input format by 

the intermediate program that was developed 

in Matlab in this study. Calibration process of 

the CE-QUAL-W2 model was started with the 

water balance. Recorded daily data were used 

to calibrate and validate water level time series 

(Figure 5). The AME were 0.28 m and 0.36 m 

for calibration and validation periods, 

respectively. For hydrodynamic calibration of 

the model, the gradient of the horizontal or 

longitudinal concentration of conservative 

constituent was investigated. Salinity is the 

only conservative constituent and historically 

used for hydrodynamic calibration. Since 

salinity usually is not measured in freshwater, 

most studies have used temperature as a first 

step in hydrodynamic calibration, followed by 

the examination of the dissolved oxygen (Cole 

et al., 2015). Temperature gradients were used 

to calibrate the hydrodynamics in the reservoir 

and then, the model was examined by the 

dissolved oxygen gradients. Calibration and 

verification results of the reservoir modeling 

indicated a good match between the simulated 

and observed water temperature and dissolved 

oxygen gradients. The AME between the 

observed and simulated temperature and 

dissolved oxygen on the sampling days for the 

calibration period were about 1.26 ºC and 1.3 

mg/L, respectively; while, for the validation 

period they were approximately 1.4 ºC and 1.6 

mg/L. Figures 6 and 7 show the vertical 

profiles of the simulated and observed water 

temperature and dissolved oxygen for some of 

the sampling days. In addition to the 

temperature and dissolved oxygen, two other 

water quality data, including nitrate/nitrite, and 

phosphorus were calibrated to investigate the 

characteristics of water quality. The AME 

between the observed and simulated 

phosphorus and nitrate values on the sampling 

days were about 0.005 mg/L P and 0.1 mg/L 

N, respectively; while for the validation period 

they were approximately 0.007mg/L P and 

0.11 mg/L N. The comparison between the 

observed data and simulated temperature 

proved that the thermal changes in the 

reservoir would initiate after the air 

temperature increases on March. Thermal 

stratification would be gradually formed 

during the warm months of the year, usually in 

June. The stable thermal stratification and the 

maximum temperature difference between the 

lower and upper layers of the reservoir would 

occur in mid-July to mid-August. At this time, 

water temperature in the upper layer may 

increase up to 20 ºC and in the lower layer may 

reach to 5 ºC. According to the vertical 

gradients of the water temperature, the 

thermocline layer is located at a depth of 

approximately 10 m below the water surface 

with an approximate thickness of 7 m. 

 

3. Results and discussion 

 

After models calibration, the developed 

watershed-reservoir management model 

((SWAT)-(CE-QUAL-W2)-(MOPSO)) was 

applied to Alavian reservoir and its results 

compared to current conditions. Minimization 

of the BMPs implementation cost, the 

downstream water demand deficits, and the 

reservoir outflow phosphorus concentration 

violation of the standard phosphorus 

concentration were defined as the objective 

functions. In the watershed model, out of 144 

HRUs, 62 were qualified for filter strip 

implementation, this is due to the fact that only 

HRUs with agricultural landuse were 

considered qualified for filter strip 

implementation. Parallel terraces were 

applicable to 18 HRUs based on landuse and 

slope of HRUs. Detention pond and grade 

stabilization structure were applicable in 41 

subbasins. The number of decision variables in 

the watershed model is presented in table 4. 

 
Table 4. Number of decision variables in the watershed model 

BMP TYPE 
Number of 

Parameters 

Numberof eligible subbasins or 

HRUs 
decision variables 

Detention Ponds 3 41 123 

Filter Strips 1 62 62 

Parallel terraces 3 18 54 

Grade Stabilization Structures 2 41 82 

  

Total 321 

 

In the reservoir model, the decision variables 

were allocated monthly water to the 
downstream demands (  , 72 decision 
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variables) and the bottom outlet withdrawal 

ratio (  , 72 decision variables). Simulation 

period duration was 72 months. Therefor the 

number of decision variables was 465 

(321+72+72). The final Pareto front with 35 

non-dominated solutions was derived with 100 

particles and 50 iterations. Solutions with the 

best downstream water demand satisfaction, 

the best outflow phosphorus concentration, and 

the minimum cost of BMPs implementation 

from the Pareto front are presented in Table 5. 

 
Table 5. The selected best solutions under the third scenario 

Objectives 

Cost of the BMPs 

Implementation ($) (Eq. 

8) 

Downstream Water 

Demand Deficit (Eq. 10) 

Outflow P Concentration 

Violation of the Standard P 

(mg/L) (Eq. 9) 

Minimum cost of the BMPs 

implementation solution 
97026.46 429.76 50.52 

The best downstream water 

demand satisfaction solution 
121787.8 354.69 46.10 

The best outflow P 

concentration solution 
223925 461.78 29.78 

 

Detailed observations of the results showed 

that among the considered BMPs, filter strip is 

the most selected BMPs in the Pareto front, 

this is due to the fact that filter strip was more 

effective to reduce nutrient loads entering the 

reservoir. The time series showing the 

reservoir water surface elevation and allocated 

water to the downstream demands in the 

solutions with the best downstream water 

demand satisfaction, and the best outflow 

phosphorus concentration are demonstrated in 

Figure 5. Additionally, the time series of the 

reservoir inflow and downstream water 

demands are presented in figure 5. The results 

indicated that, in the solution with the best 

outflow phosphorus concentration, variables 

are optimized with regard to qualitative 

conditions thus; more water volume has been 

discharged regardless of future demands. This 

would result in decreasing downstream supply. 

In fact, in the best downstream water demand 

satisfaction solution, release from the reservoir 

focuses more on downstream requirements and 

storage of water volume in the reservoir. In 

other words, in this solution, in the periods 

when the reservoir inflow is lower, more water 

is stored in the reservoir to meet future 

demands. In order to examine the efficiency of 

BMPs implementation on reservoir water 

quality, the effect of BMPs implementation on 

the obtained Pareto front solutions were 

eliminated and their new values were 

recalculated. The Differences between new 

water quality objective values and their 

previous values over the water quality 

objective function value in current conditions 

(51 mg/L) were considered as the improvement 

percentage over current conditions. Figure 6 

shows the improvement percentage of water 

quality objectives in the Pareto front with 

considering BMPs in the watershed. It is clear 

from Figure 6 that the optimized combinations 

of BMPs in the Pareto front would improve 

water quality objectives up to 45%, if 

compared with current conditions. 

Additionally, the amount of improvement 

percentage increases as the cost of BMPs (the 

number of BMPs) is increased. 

 

4. Conclusion 

 

In this paper, a coupled simulation-

optimization model was developed to examine 

the effectiveness of the two control strategies 

consisting of the reservoir operation strategy 

through selective withdrawal scheme, and 

BMPs implementation in the upland watershed 

on downstream water quality. The hydrological 

SWAT model and the hydrodynamic and water 

quality model CEQUAL-W2 were integrated 

to simulate the water quality and quantity 

processes in the watershed and reservoir, 

respectively. The linked watershed-reservoir 

model was coupled with Multi-Objective 

Particle Swarm Optimization (MOPSO) engine 

to simulate and find the optimal combination 

of the BMPs in the watershed and the optimal 

reservoir operational strategies through 
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selective withdrawal scheme. The results 

indicated that BMPs implementation in the 

watershed would enhance the reservoir water 

quality better than the reservoir operation 

strategy through selective withdrawal scheme. 

Furthermore, the optimized combinations of 

BMPs in the Pareto front would improve water 

quality objectives up to 45%, if compared with 

the current conditions. Detailed observations of 

the results revealed that among the applied 

BMPs in study, filter strip has more effect on 

reducing nutrient loads and it is the most 

chosen BMP option in the selected solutions; 

while parallel terraces and grade stabilization 

structures are the least selected options in the 

study area. This is due to the fact that filter 

strips was more effective to reduce nutrient 

loads entry into the reservoir. The proposed 

approach can be further applied to derive the 

optimal combination of the (BMPs) in the 

watershed and the optimal reservoir 

operational strategies through selective 

withdrawal scheme encompassing salinity, 

nutrient loads, and other water quality issues in 

reservoirs. 

 

 
Fig. 5. a) The time series of the reservoir water surface elevation in the best downstream water demand satisfaction and the best outflow 

phosphorus concentration solutions; b) the time series of the downstream water demand and reservoir inflow; c) allocated water in the best 

downstream water demand satisfaction and the best outflow phosphorus concentration solutions 
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Fig. 6. The improvement percentage of water quality objective function in the Pareto front with considering BMPs in the watershed 
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