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1. Introduction 

 

The complexity and variability of 

evapotranspiration processes in time and space 

have imposed some constraints on previously 
developed evapotranspiration models. 

Evapotranspiration (ET) is the combination of 

two processes where water is lost on one hand 
from the soil surface by evaporation and on the 

other hand from vegetation by transpiration 

(Chow, 2010). Availability of energy and water, 

and the ability to transport water vapour through 
the atmosphere affect the rate of evaporation, 

while the availability of energy, vapor pressure 

deficit and the amount of soil moisture control the 
transpiration rate (Bastiaanssen et al., 1998; 

Biggs et al., 2008; Su, 2002). 

The quantity of water per unit time that 
evapotranspirates from a reference crop surface 

which has sufficient water is called reference 

crop evapotranspiration (Allan et al., 1998). A 

key aspect of the water budget is estimates of the 
spatial and temporal values of PET. PET is the 

enormous water flux representing the climatic 

demand of the water and the second most 
significant component of the terrestrial 

hydrological cycle next to rainfall. It is the 

process of returning water to the atmosphere via 

evaporation from open water, soil, and plant 
surfaces, as well as transpiration from plants. 

This term has been studied and modelled using 

different empirical methods and ML (Machine 
Learning) models. The methods for PET 

estimation is divided into physically based 

Penman-Monteith method (Allan et al., 1998). 
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The energy balance based methods Priestley-
Taylor (Priestley and Taylor, 1972), Turc (Turc, 

1961) and the temperature based Hargreaves 

method (Hargreaves and Samani, 1985). The 
uncertainties in PET estimates limit the 

reliability of hydrologic and restoration 

analyses, water resources management, and 

planning. Along with PET estimates, 
hydrological implications necessitate Actual 

Evapotranspiration (AET) estimates as well to 

get an actual water budget. AET expresses the 
annual water balance between precipitation and 

latent heat exchange, which is the variable most 

frequently correlated with biodiversity at the 

continental scales. Because of the close 
relationship between production and climatic 

factors, AET is also regarded as a surrogate for 

net primary production(Leith, 1975). Most 
studies in the literature have focused on 

modelling the PET process, in which 

evaporation occurs from soil and plant surfaces 

u er no water stress. However, AET occurs 
under actual water supply conditions. Earlier 

studies have estimated AET using time-

consuming and labour-intensive methods such 
as water balance, energy balance, Bowen-ratio 

(EBBR), eddy-covariance (EC), and a few 

modelled-based methods. The modelled-based 

methods include Thornthwaite and Mather 
equation, Coutagne, Penman, Serra, Campus, 

Kessler, Jensen, and Haise, Blaney and Criddle, 

and Papadakis (Gudulas et al., 2013). These 
methods are empirical and the common issue in 

these methods is the calculation of certain 

components of the water balance based on 

several factors such as temperature, 
precipitation, humidity, etc. So, the need to 

estimate AET using limited data has become 

important. The Budyko and Turc methods 
appear to be the most appropriate; however, 

their application is heavily influenced by the 

regional conditions prevalent in each area. 

Furthermore, the more sensitive an area or 
station and the corresponding environmental 

pressures, the more important it is to apply 

the appropriate methods for estimating the 

important terms of the hydrological cycle and 
developing an efficient water resources 

management plan. This study adjusts the 

estimated PET values for the generation of 
AET. There are several studies that attempted to 

estimate AET using various empirical methods. 
However, estimation of AET using the PET 

estimates in the context of limited data 

availability has not been addressed. The present 
study tried to estimate AET for two different 

climatological conditions of Hyderabad and 

Waipara in the context of limited data which can 

serve as input to hydrological models of 
ungauged river basins. In this context, 

estimating AET given the PET estimates under 

limited data availability will be valuable in the 
water balance assessment studies for ungauged 

basins. 

 

2. Material and Methods 

 
2.1. Data and Case study 

  

The present study selected two weather 
stations with diverse climatology of dry and wet 

conditions. One is Hyderabad, with distinct 

tropical wet and dry climate that borders on hot 

semi-arid (Köppen climate classification BSh). 
(https://en.wikipedia.org/wiki/Geography_of_

Hyderabad). Hyderabad is also the capital state 

of Telangana, which lies between latitude 
17.366 N and longitude 78.746 E in the Deccan 

plateau with a normal stature of 536 m above 

mean sea level, possessing 650 square 

kilometres along the banks of Musi River with 
a populace of 9.75 million (Figure 1). The daily 

meteorological data were acquired from 

January 1965 through December 2015 (51 

years) (612 months) from the weather station at 
Professor Jayashankar Telangana State 

Agricultural University, Rajendranagar, 

Hyderabad, India. The annual average weather 
data of the meteorological station is introduced 

in Table 1 for the Hyderabad station. Five 

meteorological variables were recorded at daily 

time scale, including (1) Maximum Air 
Temperature (Tx °C); (2) minimum Air 

Temperature (Tn °C); (3) minimum Relative 

Humidity (RH, %); (4) Wind Speed (U2, m s−1) 
and (5) Solar Radiation (Rs, MJ m−2 d−1). 

Measurements were carried out at 2 m (Air 

Temperature and Relative Humidity) and 10 m 

(Wind Speed) above the soil’s surface. Data on 
Wind Speeds at 2 m (U2) were obtained from 

those taken at 10 m using the log-wind profile 

equation. 

 

 
 

https://en.wikipedia.org/wiki/Geography_of_Hyderabad
https://en.wikipedia.org/wiki/Geography_of_Hyderabad
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Table 1. Statistical values of available meteorological variables and ET0 at Hyderabad station. 

Parameters Tx (oC) Tn (oC) RH (%) Rs (W/m2) U2 (m/s) ET0 (mm/day) 

Maximum 45.50 33.00 100.00 14.45 189.90 13.16 

Minimum 17.60 5.00 6.00 3.55 0.00 0.005 

Mean 32.37 19.88 78.43 9.32 6.27 3.76 
Standard deviation 4.10 4.79 14.48 2.44 6.18 1.72 

 
Table 2. Statistical values of available meteorological variables and ET0 at Waipara station. 

Parameters Tx (oC) Tn (oC) RH (%) Rs (W/m2) U2 (m/s) ET0 (mm/day) 

Maximum 24.32 24.15 93.54 47.00 272.82 7.247 

Minimum −3.00 −3.00 0.00 0.00 0.00 0.00 

Mean 10.17 9.95 65.61 15.29 1.75 1.50 

Standard deviation 4.92 4.88 15.27 10.11 0.82 1.18 

 
Table 3. Climate classification of Hyderabad and Waipara stations 

Station  Precipitation PET P/PET (calculated) P/PET (original) 

Hyderabad 384.24 434.42 0.33 0.2-0.5 (semi-arid) 

Waipara 146.98 1596.38 0.24 0.2-0.5 (semi-arid) 

 

 
Fig. 1. Study area [Hyderabad (Top) and Waipara (bottom)]. 

 

The other station is Waipara experimental 

catchment (WARVEX) which is set up in Langs 

gully, situated on the South Island of New 
Zealand, in the Waipara River (Figure 1). The 

climate in the area is characterized by equable 

climates with few temperature extremes and 

abundant precipitation throughout the year. 
This climate’s Koppen Climate Classification 

subtype is “Cfb”. (West Coast Marine Climate).  

(https://www.weatherbase.com/weather/weathe

r.php3?s=596172&cityname=Waipara-
Canterbury-New-Zealand). The annual average 

weather data of the meteorological stations are 

given in Table 2 for the Waipara station and 
climate data was provided in Table 3. The 

catchment area of the Langs gully is 0.7 km2. 

The elevation varies between 500 m and 723 m 

above sea level. The annual rainfall varies from 
500 to 1100 mm/yr. It contains a surface slope 

of 0.22–34 degrees with a mean slope of 17 

degrees. Soils are gravelly sandy loam, depth 

ranges from 0.25 to 1.5 m, and averages 0.5 m. 
Grass and exotic forests are the primary 

vegetation. An ephemeral stream flows from 

late March through early November. The 

catchment has regular frosts and occasional 
snow in winter. Field data from Lang gully was 

collected from 2010 to 2016. All data were 

stored in data loggers and had temporal 
resolutions of 10 minutes and have been 

https://www.weatherbase.com/weather/weather.php3?s=596172&cityname=Waipara-Canterbury-New-Zealand)
https://www.weatherbase.com/weather/weather.php3?s=596172&cityname=Waipara-Canterbury-New-Zealand)
https://www.weatherbase.com/weather/weather.php3?s=596172&cityname=Waipara-Canterbury-New-Zealand)
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aggregated to the hourly time series for this 

study to match the model time step. In reference 
to the comparison of precipitation and PET, it 

was observed that both the stations fall under 

semi-arid regions (Table 3). Based on the Food 
and Agriculture Organization, Agro-Ecological 

Zone concept, classifies parts of the world as 

semi-arid if the annual precipitation totals 

between one fifth and one half of the PET (i.e., 
0.2 < P/PET ≤ 0.5) from Table 3. It is the 

climate of a region with precipitation is less than 

PET but not as low as a desert climate. 
 

2.2. Methodology 
 

Estimation of Potential Evapotranspiration 

using Empirical Methods: 

PET can be estimated based on energy balance 
and water vapor mass flux transfer based 

empirical methodologies (Ma et al., 2021). 

These empirical models vary in terms of solar 

radiation, temperature considering the physical 
processes of radiation, and transport 

characteristics of natural surfaces. 
FAO-Penman Monteith Method: 

The Food and Agriculture Organization of the 

United Nations (FAO) suggested that the 
Penman Monteith as widely used worldwide as 

benchmark evapotranspiration assessment 

(Allan et al., 1998). Estimation of PET using 

Penman-Monteith model, various climatic 
factors, including temperature, wind speed, 

solar radiation, and relative humidity, are 

required (Eq. 1). 

PET = 
0.408𝐷(𝑅𝑛−𝐺)+𝑔(

900

𝑇+273
)𝑈2(𝑒𝑠−𝑒𝑎)

𝐷+𝑔(1+0.34𝑈2)
          (1)  

Where Rn is the net radiation at crop surface 

(MJ m-2 d-1), G is the soil heat flux (MJ m-2 d-1), 
T is the average temperature at 2 m height(°C), 

U2 is wind speed measured at 2 m height [m s-

1], (es - ea) is pressure deficit for measurement 
at 2 m height [k Pa], D is slope vapor pressure 

curve [k pa°C-1],g is psychrometric constant [k 

pa°C-1],900 is coefficient for the reference crop 

[l J-1 Kg K d-1], 0.34 is wind coefficient for the 
reference crop [s m-1]. 
Turc Method: 

Turc developed an equation (Turc, 1961) for 

calculating daily PET as a function of air 

temperature, relative humidity, and solar 

radiation. The Turc method estimates PET 
based on mean temperature and solar radiation 

on the daily time scale. The equation is given by 

Eq. 2.  

PET = 0.013 
 𝑇𝑚

𝑇𝑚+15 
(23.88Rs + 50)               (2) 

Where Tm is the mean temperature (°C), solar 

radiation (Rs) is [0.25 + 0.5 (n/N)] Ra, Ra is 
extra-terrestrial radiation (mm⁄d), n is actual 

hours of bright sunshine (hrs), N is the 

maximum possible hours of sunshine (hrs). 
Priestly and Taylor method: 

The Priestley-Taylor model is a condensed 
version of the original Penman combination 

equation, which was developed by (Priestley 

and Taylor, 1972). The model original purpose 

was to be used in large-scale numerical 
modelling where it is assumed that because 

advection is negligible, the aerodynamic 

component of the original Penman equation can 

be ignored. This method is calculated using net 
radiation and latent heat of vaporization on a 

daily time scale. The equation is given by 

Equation 3. 

PET = A (
𝐷

𝐷+𝑔
) (

𝑅𝑛−𝐺

𝐿
) 

D=
4098[0.6108𝑒𝑥𝑝 (

17.27∗𝑇𝑚

𝑇𝑚+237.3
)]

(𝑇𝑚+237.3)2                            (3) 

Where D is slope vapor pressure curve [k pa°C-

1], g is psychrometric constant [k pa°C-1], Rn 

is the net radiation at crop surface (MJ m-2 d -

1), A is a calibration constant 1.26, L is the latent 
heat of vaporization and can be considered as 

2.45 (MJ/kg) which is constant. 
Hargreaves Method: 

The Hargreaves-Samani model is one of the 

more well-known versions of an older 

evapotranspiration model (Hargreaves and 
Samani, 1985). The Hargreaves-Samani 

method estimates PET based on maximum and 

minimum air temperature on a daily time scale. 
The equation is given by Equation 4. 

PET=0.0023Ra (Tm+17.8) (Td 0.5                     (4) 

Where, Td = difference between maximum 

temperature and min temperature (°C), Tm = 
mean temperature (°C), Ra = extra-terrestrial 

radiation (mm⁄d) 
Estimation of Actual Evapotranspiration using 

Empirical methods: 

AET is constrained by the availability of 

energy, water, and the resistance provided by 

the atmosphere and vegetation (Rim, 2008). 

Because of these constraints, AET 
measurement methodologies such as 

micrometeorological methods (energy-budget 

Bowen ratio or eddy correlation), and lysimeter-
based techniques are costly and labour-

intensive (Su et al., 2022). However, empirical 

models have been developed for estimating 

AET using precipitation and PET, which works 
on the assumption that AET is constrained by 
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precipitation under dry conditions and PET 

under wet conditions (Zhang et al., 2008). The 
present study has provided alternatives based on 

precipitation and PET equations to estimate 

AET under limited data conditions for two 
different climatic regions of Hyderabad and 

Waipara. The present study used classical 

empirical AET models, which uses the 

precipitation and PET as inputs such as Budyko 
(1974) and Turc (1954). The implementation of 

the proposed methodology was done based on 

the PET modelled using different machine 
learning models taking the Penman-Monteith as 

the reference method. The PET estimates from 

various ML models such as LSTM, ANN, RF, 

SVR, and GBR were utilized in place of PET in 
the Budyko and Turc methods. The 

meteorological variables used in estimating 

PET were temperature, wind speed, and relative 
humidity. The proposed methodology provides 

a detailed understanding on estimating AET 

with readily available PET and precipitation 

under limited data for diverse climatic 
conditions.  
Budyko method: 

To estimate AET with readily available and 

modelled operational hydro-meteorological 

variables of P and PET, the study adopted the 

Budyko (1961) equation. Budyko Equation is a 
classic model for estimating AET by relating 

long-term-average water and energy balances at 

catchment scales using precipitation and PET. 
Budyko established a relationship between 

three hydro-climatic variables for a basin: 

precipitation (P), PET, and AET. The Budyko 

formulation depends on the relationship 
between three hydro-meteorological variables: 

P, PET, and AET, which states that the ratio of 

the AET over precipitation (AET/P) is 
fundamentally related to the ratio of the PET 

over precipitation (PET/P) (Budyko, 1961; Fu, 

B.P., 1981) as follows Equation 5. 

𝐸𝑇

𝑃
= 1 +

𝑃𝐸𝑇

𝑃
− (1 + (

𝑃𝐸𝑇

𝑃
)

𝜔

)
(1/𝜔)

              (5) 

The parameter ‘𝜔’ Accounts for the basin 
characteristics such as soil, vegetation, terrain, 

etc.(McVicar et al., 2012). The original Budyko 

equation was developed for a long timescale. 
For a reasonable application of the Budyko 

equation for short-term scales, the original 

Budyko formulation has been modified by 
several researchers and one of the most widely 

used formulations is as implemented by (Zhang 

et al., 2008) for estimating the AET, as follows 

Equation 6. 

𝐴𝐸𝑇𝐵𝑢𝑑𝑦𝑘𝑜 = [𝑃 (1 −

𝑒𝑥𝑝 (
−𝑃𝐸𝑇

𝑃
)) 𝑃𝐸𝑇 𝑡𝑎𝑛ℎ (

𝑃

𝑃𝐸𝑇
)]

0.5

                 (6) 

Turc Method: 

Another well accepted and widely used AET 

model which considers precipitation and PET 

along with soil and vegetative characteristics 
implicitly is Turc model (Turc, 1954). It is also 

one of the widely used AET models in 

hydrological applications (e.g.(Asokan and 

Jarsjö, 2010) (Eq. 7). 

𝐴𝐸𝑇𝑇𝑢𝑟𝑐 =  
𝑃

√0.9+
𝑃2

𝑃𝐸𝑇2

                                        (7) 

 
2.3. Machine Learning Methods 

 

In this study, four ML models were 

implemented for modelling PET for Hyderabad 

and Waipara stations, namely, LSTM, GBR, 
SVR, and RF regressor, and a comparison was 

made between the models to analyse the best 

ML model with limited meteorological data for 
two diverse climatic conditions.  
 
2.3.1. Long short-term memory (LSTM) 

Long short-term memory neural networks are 
like Recurrent neural networks (RNN), which 

have the capability to learn larger data 

compared to normal RNNs. This is done by 
controlling the hidden state in LSTM and 

solving the vanishing gradient problem. LSTM 

has feedback connections and an input gate, an 

output gate, and a forget gate (Figure 2). LSTM 
calculates a gate values by using the previous 

cell value Ct-1, previously hidden values ht-1, and 

input xt. 
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Fig. 2. Overview diagram of Long short-term memory (LSTM). Where f, i and o denotes the forget gate, input gate, an output gate, ht  denotes 

hidden state, Ct  denotes cell state, 𝜎 is the sigmoid function, and g is the activation function. 

 
𝑖𝑡 =  𝐹(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖 ℎ𝑡−1 + 𝑊𝑐𝑖𝐶𝑡 −1 + 𝑏𝑖𝑎𝑠𝑖 ) 

𝑜𝑡 =  𝐹(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝐶𝑡−1 + 𝑏𝑖𝑎𝑠𝑜)  

𝑓𝑡 =  𝐹(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓 ℎ𝑡−1 + 𝑊𝑐𝑓𝐶𝑡−1 + 𝑏𝑖𝑎𝑠𝑓 )  

And the cell value is calculated using Equation 

8.  

𝐶𝑡 =  𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐹(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 +
𝑏𝑖𝑎𝑠𝑐)    

ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ (𝐶𝑡)                    (8) 

LSTM is like RNN, but by using the three gates, 
it can process longer lengths of data, and it is 

also able to solve the vanishing gradient 

problem. 

 
2.3.2. Gradient boosting regression (GBR)  

GBR was introduced by (Geigy et al., 1975; 

Jensen et al., 2012), also known as multiple 

additive regression trees (MART) or Gradient 
boosting decision tree (GBDT), is used ML 

algorithm to get robust performance in practical 

applications. As defined by (Blaney and 1892, 

1952), GBR comprises three elements: a loss 
function, a weak learner, and an additive model 

to optimize, make predictions, and add weak 

learners to minimize the loss function, 
respectively. Because GBR is fast, to avoid 

overfitting, it is good at handling missing values 

and outliers, and it is superior to conventional 

ML methods in many fields (Blaney and 1892, 
1952; Bray and Kurtz, 1945). It also allows for 

the optimization of arbitrary differentiable loss 

functions. In each stage, a regression tree is fit 
on the negative gradient of the given loss 

function. Gradient boosting involves three 

elements: A loss function to be optimized, a 

weak learner to make predictions, and an 
additive model to add weak learners to 

minimize the loss function. Gradient Boosting 

is a greedy algorithm and can overfit a training 
dataset quickly. It can benefit from 

regularization methods that penalize various 

parts of the algorithm and improve the 

performance of the algorithm by reducing 

overfitting. There are four improvements to 
basic gradient boosting: Tree Constraints, 

Shrinkage, Sampling, and Penalized learning. 

Gradient Boosting trains many models in a 

gradual, additive, and sequential manner. The 
major difference between AdaBoost and 

Gradient Boosting Algorithms is how the two 

algorithms identify the shortcomings of weak 

learners (e.g., decision trees). While the 
AdaBoost model identifies the shortcomings by 

using high weight data points, gradient boosting 

performs the same by using gradients in the loss 
function (y = ax + b + e, e needs a special 

mention as it is the error term). The loss 

function is a measure indicating how good a 

model’s coefficients are at fitting the underlying 
data. A logical understanding of loss function 

would depend on what we are trying to 

optimize. For example, if we are trying to 
predict the sales prices by using a regression, 

then the loss function would be based on the 

error between true and predicted house prices. 

Similarly, if our goal is to classify credit 
defaults, then the loss function would be a 

measure of how good our predictive model is at 

classifying bad loans. One of the biggest 
motivations for using gradient boosting is that it 

allows one to optimize a user-specified cost 

function, instead of a loss function that usually 

offers less control and does not correspond with 
real-world applications. 
 
2.3.3. Random forest regression (RF) 

RF is an ensemble technique, which is capable 

of both classification and regression, known as 

bagging. It is one of the practical algorithms for 

predictive analysis. In determining the final 
output, the principle of RF is to combine the 
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various decision trees rather than depending on 

individual decision trees. RF is used for 
classification by majority vote and regression 

by an average of the single-tree method in the 

output generation process (Jensen et al., 1990). 
RF models have supervised ML approaches, 

which are popular in ML  and are frequently 

used in hydrology (Bray and Kurtz, 1945; 

Landeras et al., 2008; Walter et al., 2012). The 
Sum of Squared Error (SSE) has been 

calculated between the observed values and the 

predicted values. This procedure will 
recursively continue until the entire data is 

covered. The model can be written as Equation 

9. 

 𝑓(𝑥) = 𝑓𝑜(𝑥) + 𝑓1(𝑥) + 𝑓2(𝑥) + ⋯                     (9) 
Where the ultimate model f is the sum of simple 

base models fi. Where each base regressor 

portion is the simple decision tree. The basic 
idea behind this is to combine multiple decision 

trees in determining the final output rather than 

relying on individual decision trees. 

Approach: 1. Pick at random K data points from 
the training set; 2. Build the decision tree 

associated with those K data points; 3. Choose 

the number Ntree of trees you want to build and 
repeat steps 1 & 2; 4. For a new data point, make 

each one of your Ntree trees predict the value of 

Y for the data point, and assign the new data 

point the average across all the predicted Y 
values. Random forests or random decision 

forests are an ensemble learning method for 

classification, regression, and other tasks that 
operate by constructing a multitude of decision 

trees at training time and outputting the class 

that is the mode of the classes (classification) or 

mean prediction (regression) of the individual 

trees. Random decision forests correct for 
decision trees' habit of overfitting to their 

training set. Each Decision Tree in the Extra 

Trees Forest is constructed from the original 
training sample. Then, at each test node, each 

tree is provided with a random sample of k 

features from the feature-set from which each 

decision tree must select the best feature to split 
the data based on some mathematical criteria 

(typically the Gini Index). This random sample 

of features leads to the creation of multiple de-
correlated decision trees. 

 
2.3.4. Support vector regression (SVR) 

In several research studies, SVR, which is 

focused on systemic risk minimization to 
prevent overfitting (Deo and Samui, 2016), was 

adopted over ANN due to the solution’s 

uniqueness and globalization (Magliulo et al., 
2003). The SVR has been commonly used in 

engineering (Alexandris and Kerkides, 2003; 

Naoum and Tsanis, 2003; Zheng et al., 2016) Its 

evapotranspiration applications are also quite 
impressive (Asokan and Jarsjö, 2010; Pereira 

and Pruitt, 2004; Utset et al., 2004) firstly, 

applied the SVR approach for rainfall-runoff 
modeling in hydrology. SVRs are today known 

as efficient and robust ML algorithms for 

predictions. When the training data of {(x1,y1), 

… … .. (xn,yn)} with n patterns, a function f(x) 
will be identified with the consideration of the 

deviation from the observed target variables yi 

for all the training data (Silva and Manzione, 

2021). Using a non-linear mapping function φ, 
X will map the input variables to a higher 

dimensional feature space. 

 

 
Fig. 3. Structure of Support Vector Regression 

 

In simple regression, we try to minimize the 

error rate. While in SVR we try to fit the error 
within a certain threshold. Our objective with 

SVR is to consider the points that are within the 

boundary line. Our best fit line is the line 

hyperplane that has a maximum number of 

points. In the case of regression, a margin of 
tolerance (epsilon) is set in approximation to the 

SVM (Support Vector Machines) which would 

have already been requested from the problem. 
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But besides this fact, there is also a more 

complicated reason, the algorithm is more 
complicated and therefore to be taken into 

consideration. However, the main idea is 

always the same: to minimize error, 
individualizing the hyperplane which 

maximizes the margin, keeping in mind that 

part of the error is tolerated. The goal of linear 

regression is to minimize the error between the 
prediction and data. In SVR, the goal is to make 

sure that the errors do not exceed the threshold 

(Eq. 10). 

𝑓(𝑥; 𝑤) =< 𝑊, 𝜑(𝑥) > +𝑏                        (10)  

Where W and b are the regression coefficients 

and <, > denotes the inner product. SVR uses 

the ∈ insensitive error to measure the error 

between f(x) and the observed values of y, (Eq. 
11).  

|𝑓(𝑥; 𝑤) − 𝑦|∈ =

{
0,                   𝑖𝑓 |𝑓(𝑥; 𝑤) − 𝑦| < ∈ 

|𝑓(𝑥; 𝑤) − 𝑦|− ∈ ,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
         (11)                     

Using the training data of (xi,yi) the values of w 

and b are calculated by minimizing the 

objective function (Eq. 12): 

𝐹 =
𝐶

𝑁
∑ |𝑓(𝑥𝑖, 𝑤) − 𝑦𝑖|∈ +

1

2
||𝑤||2𝑛

𝑖=1     (12) 

Where ∈ and C are the hyper-parameters. The 
minimization of the objective function, F, uses 

the Lagrange multiplier method. The ultimate 

regression equation with kernel function 
K(X,X')  can be in the form (Eq. 13). 

𝑓(𝑋) =  ∑ 𝐾(𝑋, 𝑋𝑖) + 𝑏𝑖      (13) 
Based on earlier studies (Amatya et al., 1995), 

the kernel function RBF was chosen to measure 

the performance of the model for the ET0. A 

complete overview of the SVR method can be 
found in (Amatya et al., 1995) 

 
2.3.5. Model evaluation 

The accuracy of the ML models was calculated 

using the coefficient of determination (R2) (Eq. 
14), the root mean squared error (RMSE) (Eq. 

15), and the mean absolute error (MAE) (Eq. 

16). The equations are as follows:   

𝑅2 =  1 −  
∑(𝐸𝑇𝑜𝑏𝑠 −𝐸𝑇𝑠𝑖𝑚)2

∑(𝐸𝑇𝑜𝑏𝑠−𝐸𝑇𝑚𝑒𝑎𝑛)2     (11) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
∑ (𝐸𝑇𝑜𝑏𝑠−𝐸𝑇𝑠𝑖𝑚)2𝑛

𝑖=1

𝑛
      (12) 

𝑀𝐴𝐸 =  
1

𝑁
∑ (𝐸𝑇𝑜𝑏𝑠 − 𝐸𝑇𝑠𝑖𝑚)𝑛

𝑖=1                 (13) 

Where ETsim is the simulated potential 
evapotranspiration, ET0 at time step i in 

mm/day. ETobs is the observed ET0 at time step 

i in mm/day. ETmean is the average ET0 at time 

step i in mm/day. n is the number of data pairs, 
respectively. 

 

3. Results and discussion 
 

The modelled PET estimates using five 

different ML models like LSTM, GBR, RF, 

ANN, and SVR were considered in this analysis 
to estimate AET using Budyko and Turc 

methods. The climate variables considered for 

estimating daily PET using five different 
models and Penman-Monteith methods were 

the daily maximum temperature, minimum 

temperature, relative humidity, and solar 

radiation. The four various optimal input 
combinations for modelling this daily PET were 

all available meteorological parameters; 

temperature, wind speed, and relative humidity; 

temperature and wind speed; and temperature 
and relative humidity. The two AET methods of 

Budyko and Turc use precipitation, and the PET 

estimates. The input combinations were 
replicated from the estimation of PET to 

estimate different modelled combinations of 

AET as given in Tables 4-7. The best empirical 

AET methods were recorded corresponding to 
the four ML models and their input 

combinations in terms of R2, RMSE, and MAE 

for four empirical methods. These were listed in 
Tables 4, 5, 6, and 7 for the Hyderabad and 

Waipara Stations.  

 
Table 4. Performance of Budyko and Turc methods in estimating AET using PET modelled from Random Forest (RF), Support Vector 
Regressor (SVR), Gradient Boosting Regressor (GBR), Long Short-Term Memory (LSTM) and Artificial Neural Network (ANN) for Penman-

Monteith Method under different input combinations. 

Parameters Model 

Hyderabad Waipara 

Budyko Turc Budyko Turc 

R2 RMSE 
(mm/d) 

MAE (

mm/d) 
R2 RMSE 

(mm/d) 
MAE  
(mm/d) 

R2 RMSE 
(mm/d) 

MAE  
(mm/d) 

R2 RMSE 
(mm/d) 

MAE  
(mm/d) 

All parameters 

RF 0.99 0.05 0.01 0.99 0.06 0.01 0.99 0.03 0.04 0.99 0.02 0.01 

SVR 0.99 0.04 0.02 0.99 0.04 0.02 0.98 0.02 0.01 0.98 0.03 0.04 

GBR 0.99 0.09 0.02 0.99 0.09 0.02 0.98 0.03 0.04 0.99 0.03 0.04 

LSTM 0.99 0.05 0.01 0.99 0.06 0.01 0.95 0.22 0.01 0.97 0.23 0.05 

ANN 0.99 0.04 0.01 0.99 0.04 0.01 0.98 0.02 0.01 0.98 0.03 0.01 
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Temperature, 

Wind Speed, 

Relative 

Humidity 

RF 0.91 0.51 0.17 0.91 0.18 0.26 0.95 0.06 0.01 0.95 0.06 0.01 

SVR 0.92 0.47 0.14 0.91 0.50 0.16 0.95 0.05 0.03 0.95 0.05 0.06 

GBR 0.91 0.47 0.14 0.91 0.45 0.15 0.95 0.05 0.01 0.96 0.06 0.01 

LSTM 0.92 0.38 0.09 0.92 0.49 0.15 0.96 0.19 0.05 0.96 0.20 0.05 

ANN 0.92 0.48 0.15 0.91 0.40 0.09 0.96 0.06 0.02 0.96 0.06 0.01 

Temperature 

and Wind 

Speed 

RF 0.90 0.69 0.26 0.89 0.72 0.27 0.79 0.19 0.05 0.79 0.20 0.05 

SVR 0.91 0.57 0.22 0.91 0.58 0.22 0.89 0.14 0.03 0.89 0.14 0.04 

GBR 0.92 0.56 0.21 0.91 0.58 0.22 0.85 0.17 0.05 0.85 0.18 0.05 

LSTM 0.92 0.52 0.18 0.93 0.59 0.23 0.77 0.21 0.06 0.77 0.22 0.06 

ANN 0.920 0.56 0.21 0.92 0.54 0.19 0.86 0.18 0.05 0.85 0.19 0.05 

Temperature 

and Relative 

Humidity 

RF 0.84 0.64 0.19 0.84 0.66 0.20 0.95 0.07 0.05 0.92 0.08 0.06 

SVR 0.88 0.54 0.18 0.88 0.60 0.21 0.92 0.05 0.07 0.95 0.06 0.07 

GBR 0.881 0.58 0.21 0.88 0.60 0.21 0.92 0.06 0.05 0.99 0.06 0.01 

LSTM 0.85 0.48 0.15 0.85 0.56 0.18 0.95 0.19 0.05 0.77 0.20 0.05 

ANN 0.88 0.58 0.20 0.87 0.50 0.15 0.95 0.06 0.01 0.95 0.06 0.01 

 
Table 5. Performance of Budyko and Turc methods in estimating AET using PET modelled from Random Forest (RF), Support Vector 
Regressor (SVR), Gradient Boosting Regressor (GBR), Long Short-Term Memory (LSTM) and Artificial Neural Network (ANN) for Priestley 

Taylor Method under different input combinations. 

Parameters Model 

Hyderabad Waipara 

Budyko Turc Budyko Turc 

R2 RMSE 
(mm/d) 

MAE 
(mm/d) 

R2 RMSE 
(mm/d) 

MAE 
(mm/d) 

R2 RMSE 
(mm/d) 

MAE 
(mm/d) 

R2 RMSE 
(mm/d) 

MAE 
(mm/d) 

All parameters 

RF 0.94 0.09 0.02 0.94 0.20 0.03 0.93 0.04 0.04 0.93 0.04 0.05 

SVR 0.96 0.08 0.04 0.96 0.18 0.04 0.88 0.06 0.02 0.88 0.06 0.09 

GBR 0.96 0.06 0.02 0.96 0.01 0.01 0.88 0.06 0.03 0.88 0.06 0.03 

LSTM 0.99 0.01 0.022 0.99 0.03 0.024 0.92 0.05 0.03 0.92 0.05 0.08 

ANN 0.95 0.07 0.03 0.95 0.17 0.03 0.92 0.05 0.08 0.92 0.05 0.08 

Temperature 

and Rs 

RF 0.92 0.23 0.03 0.92 0.24 0.03 0.49 0.18 0.03 0.49 0.19 0.03 

SVR 0.93 0.22 0.06 0.93 0.23 0.06 0.53 0.16 0.03 0.53 0.17 0.03 

GBR 0.93 0.22 0.05 0.93 0.23 0.05 0.54 0.17 0.04 0.54 0.18 0.04 

LSTM 0.86 0.30 0.04 0.86 0.31 0.05 0.54 0.17 0.03 0.54 0.17 0.03 

ANN 0.93 0.21 0.05 0.93 0.22 0.05 0.53 0.17 0.03 0.53 0.18 0.03 

Temperature 

and Relative 

Humidity 

RF 0.89 0.26 0.04 0.89 0.28 0.04 0.58 0.16 0.03 0.57 0.17 0.03 

SVR 0.93 0.21 0.04 0.93 0.22 0.04 0.60 0.13 0.03 0.60 0.14 0.01 

GBR 0.93 0.22 0.03 0.92 0.23 0.04 0.60 0.15 0.03 0.60 0.16 0.03 

LSTM 0.97 0.11 0.02 0.97 0.63 0.12 0.03 0.15 0.03 0.61 0.16 0.03 

ANN 0.93 0.22 0.03 0.93 0.28 0.05 0.59 0.15 0.03 0.59 0.16 0.03 

 
Table 6. Performance of Budyko and Turc methods in estimating AET using PET modelled from Random Forest (RF), Support Vector 
Regressor (SVR), Gradient Boosting Regressor (GBR), Long Short-Term Memory (LSTM) and Artificial Neural Network (ANN) for 

Hargreaves Method under different input combinations. 

Parameters Model 

Hyderabad Waipara 

Budyko Turc Budyko Turc 

R2 RMSE 
(mm/d) 

MAE 
(mm/d) 

R2 RMSE 
(mm/d) 

MAE 
(mm/d) 

R2 RMSE 
(mm/d) 

MAE 
(mm/d) 

R2 RMSE 
(mm/d) 

MAE 
(mm/d) 

All parameters 

RF 0.99 0.01 0.01 0.99 0.01 0.02 0.97 0.07 0.02 0.97 0.07 0.02 

SVR 0.98 0.04 0.02 0.98 0.04 0.02 0.99 0.02 0.06 0.99 0.02 0.06 

GBR 0.99 0.01 0.03 0.99 0.01 0.04 0.97 0.07 0.02 0.98 0.07 0.02 

LSTM 0.99 0.01 0.02 0.99 0.01 0.01 0.97 0.02 0.03 0.97 0.02 0.08 

ANN 0.99 0.01 0.03 0.99 0.01 0.01 0.99 0.02 0.07 0.99 0.02 0.08 

Minimum 

Temperature , Rs 

RF 0.99 0.25 0.05 0.99 0.29 0.05 0.97 0.04 0.08 0.97 0.07 0.05 

SVR 0.98 0.13 0.03 0.98 0.13 0.04 0.99 0.02 0.06 0.98 0.02 0.06 

GBR 0.99 0.13 0.02 0.98 0.13 0.02 0.99 0.06 0.02 0.99 0.07 0.02 

LSTM 0.99 0.20 0.02 0.99 0.21 0.02 0.97 0.02 0.04 0.97 0.02 0.04 

ANN 0.99 0.13 0.02 0.98 0.14 0.03 0.99 0.02 0.05 0.99 0.02 0.06 
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Table 7. Performance of Budyko and Turc methods in estimating AET using PET modelled from Random Forest (RF), Support Vector 

Regressor (SVR), Gradient Boosting Regressor (GBR), Long Short-Term Memory (LSTM) and Artificial Neural Network (ANN) for Turc 
Method under different input combinations. 

Parameters Model 

Hyderabad Waipara 

Budyko Turc Budyko Turc 

R2 RMSE 
(mm/d) 

MAE  
(mm/d) 

R2 RMSE 
(mm/d) 

MAE  
(mm/d) 

R2 RMSE 
(mm/d) 

MAE  
(mm/d) 

R2 RMSE 
(mm/d) 

MAE  
(mm/d) 

All parameters 

RF 0.99 0.02 0.01 0.99 0.04 0.05 0.99 0.06 0.04 0.99 0.06 0.04 

SVR 0.99 0.02 0.01 0.98 0.03 0.01 0.99 0.01 0.04 0.99 0.01 0.04 

GBR 0.99 0.04 0.04 0.99 0.05 0.04 0.99 0.01 0.04 0.99 0.01 0.04 

LSTM 0.99 0.01 0.02 0.99 0.01 0.03 0.99 0.02 0.01 0.99 0.02 0.01 

ANN 0.99 0.07 0.01 0.99 0.07 0.01 0.99 0.02 0.01 0.99 0.02 0.01 

Minimum 

Temperature , 

Rs 

RF 0.99 0.01 0.01 0.99 0.01 0.04 0.93 0.10 0.01 0.93 0.10 0.01 

SVR 0.98 0.02 0.04 0.98 0.02 0.04 0.99 0.08 0.01 0.99 0.09 0.01 

GBR 0.99 0.08 0.04 0.99 0.08 0.04 0.95 0.08 0.01 0.95 0.09 0.01 

LSTM 0.95 0.04 0.03 0.95 0.21 0.03 0.99 0.09 0.01 0.98 0.10 0.01 

ANN 0.99 0.08 0.04 0.99 0.08 0.01 0.99 0.09 0.01 0.99 0.10 0.01 

 
The performance of AET methods (Budyko and 

Turc) using PET obtained from ML models 

such as LSTM, ANN, SVR, GBR, and RF and 

Penman-Monteith method for the two stations 
of Hyderabad and Waipara was provided in 

Table 4. The results demonstrated that the tested 

models had comparable performance over the 
two stations. Figure 4 shows the comparisons 

between observed AET using PET from 

Penman-Monteith and the AET estimated using 

modelled PET values with all parameters as 
input combinations. The model estimated 

values of AET using LSTM, ANN, and SVR 

based PET models showed closer agreement 

with observed AET estimates. Also during the 
testing period, the LSTM and ANN models 

performed marginally better than the GBR, with 

estimated R2 values of the two stations being 
Hyderabad as 0.990 (LSTM), 0.998 (ANN), 

0.990 (SVR) and 0.990 (GBR), 0.990 (RF) and 

for Waipara 0.990 (LSTM), 0.998 (ANN), 

0.990 (SVR) and 0.990 (GBR), 0.990 (RF). For 
Hyderabad station, the results were the same for 

both the AET methods; it was seen that both 

Budyko and Turc performed well. It was also 
observed from the study that, among the 

evaluated models, LSTM and ANN models 

with all input combinations accomplished 

excellent performances, trailed by SVR. The 

performances for the models being LSTM 

(RMSE: 0.06 mm⁄d, MAE: 0.01 mm⁄d, and R2: 

0.990) for the Budyko method and (RMSE: 0.04 

mm⁄d, MAE: 0.01 mm⁄d, and R2: 0.998) for 
Turc method, ANN (RMSE: 0.04 mm⁄d, MAE: 

0.01 mm⁄d, and R2:0.998), SVR (RMSE: 0.04 

mm⁄d, MAE: 0.02 mm⁄d, and R2: 0.990), for 
Budyko as well as Turc methods. The GBR 

model could likewise accomplish reliable 

results with (RMSE: 0.09 mm⁄d, MAE: 0.02 

mm⁄d, and R2: 0.987), while the RF model had 
also shown promising performance with 

(RMSE: 0.05 mm⁄d, MAE: 0.01 mm⁄d, and R2: 

0.980). 

The performances of the five ML models and 
the two AET methods for the Priestley Taylor 

method of PER was provided in Table 5. Table 

5 demonstrated that the tested models had 
comparable performance over the two stations. 

Figures 5-6 show the comparisons between 

observed AET and model estimated values in 

the form of a box plot for two AET-based 
methods under different input combinations for 

both stations. From Table 5 for the Priestley 

Taylor method also results were the same with 
the models LSTM, ANN, and SVR estimated 

values showing closer agreement with those of 

observed AET followed by GBR and RF. 
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Fig. 4. Comparison of observed and estimated AET using different models (GBR, ANN, LSTM, RF, and SVR) with varying parameters of 

input for the validation period for Budyko (Top) and Turc methods (Bottom) at Hyderabad station for Penman-Monteith method. 

 

 
Fig. 5. Comparison of observed and estimated AET using different models (GBR, ANN, LSTM, RF, and SVR) with varying parameters of 

input for the validation period for Budyko(Top) and Turc methods (Bottom) at Waipara station for penman monteith method. 
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Fig. 6. Comparison of observed and estimated AET using different models (GBR, ANN, LSTM, RF, and SVR) with varying parameters of 
input for the validation period for Budyko(Top) and Turc methods (Bottom) at Hyderabad station for Priestley method. 

 

The performance of these ML models and the 

two AET methods for the Hargreaves and Turc 

methods was provided in Tables 6-7 for both the 

stations. Tables 6-7 demonstrated that the tested 
models had comparable performance over the 

two stations. Figures 7-11 show the 

comparisons between observed AET and model 
estimated values in the form of a box plot for 

two AET-based methods under different input 

combinations for the Hargreaves and Turc 

methods. From Tables 6-7 the ranking of the 
models remained the same as Penman-Monteith 

and Priestley methods. We have observed that 

when a limited data combination of PET was 
utilized to estimate AET, the results have been 

phenomenal, this can be seen in Tables 6-7 for 

all the methods with their R2 values ranging 

from 0.98 to 0.99. During the validation stage at 
Hyderabad station, the PET using the input 

combinations like temperature, relative 

humidity, and wind speed results (MAE: 0.01–
0.09 mm⁄d, RMSE:0.01-0.05 mm⁄d, and R2: 

0.98–0.99) played out the best for both the AET 

methods of Budyko and Turc. Methods using 

models with temperature and wind speed data 
as input combinations accomplished low 

performance (RMSE: 0.56–058 mm⁄d, MAE: 

0.17–0.21 mm⁄d and R2: 0.88–0.90), trailed by 
methods dependent on temperature and relative 

humidity input (RMSE: 0.516-0.56 mm⁄d, 

MAE: 0.15-0.21 mm⁄d and R2: 0.87- 0.88) for 

Penman-Monteith method. For the Priestley 
Taylor method, the AET methods accomplished 

low performance with temperature and solar 

radiation as input (RMSE: 0.21–0.31 mm⁄d, 
MAE: 0.04–0.12 mm⁄d and R2: 0.865–0.939), 

followed by dependent on temperature and 

relative humidity input (RMSE: 0.23–0.31 

mm⁄d, MAE: 0.04–0.21mm⁄d and R2: 0.93–

0.97). For Hargreaves and Turc methods, the 

minimum temperature and solar radiation 
combination performed the same as all 

parameters input combinations for both the 

AET methods. It is worth noting that even for 
the AET estimates, the models which are blends 

of temperature data with relative humidity and 

wind speed, individually, could accomplish 

preferred performance over models dependent 
on temperature and relative humidity input. And 

the combination of temperature and solar 

radiation could also accomplish excellent 
performance compared to temperature and 

relative humidity for the Priestley method. The 

outcomes demonstrated that the AET methods 

using PET modelled from LSTM and 
ANN performed superior to RF, SVR, and 

GBR, with temperature and wind speed as input 

combinations. Furthermore, the AET with 
LSTM model showed the most remarkable 

performance when temperature, wind speed, 

and relative humidity data were accessible for 

the Penman-Monteith method and temperature 
and solar radiation when used for Priestley, 

Hargreaves, and Turc methods. Among the five 

ML models performing in estimating AET, the 
second-best model was noted as ANN, followed 

by SVR, RF, and GBR. Hence, LSTM and ANN 

can be concluded as the best ML models among 

any input combination which can be employed 
in calculating AET, whereas other models 

performed low when the input combinations 

were reduced. It was also noted that the two 
AET methods showed similar performance in 

all the used cases. 
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Fig. 7. Comparison of observed and estimated AET using different models (GBR, ANN, LSTM, RF, and SVR) with varying parameters of 

input for the validation period for Budyko (Top) and Turc methods (Bottom) at Waipara station for Priestley method. 

 

 
Fig. 8. Comparison of observed and estimated AET using different models (GBR, ANN, LSTM, RF, and SVR) with varying parameters of 

input for the validation period for Budyko(Top) and Turc methods (Bottom) at Hyderabad station for Hargreaves method. 
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Fig. 9. Comparison of observed and estimated AET using different models (GBR, ANN, LSTM, RF, and SVR) with varying parameters of 

input for the validation period for Budyko(left) and Turc methods (right) at Waipara station for Hargreaves method. 
 

 
Fig. 10. Comparison of observed and estimated AET using different models (GBR, ANN, LSTM, RF, and SVR) with varying parameters of 

input for the validation period for Budyko(Top) and Turc methods (bottom) at Hyderabad station for Turc method. 
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Fig. 11. Comparison of observed and estimated AET using different models (GBR, ANN, LSTM, RF, and SVR) with varying parameters of 
input for the validation period for Budyko(Top) and Turc methods (bottom) at Waipara station for Turc method. 

 

It was also observed that both AET methods, the 

results for the Penman-Monteith method were 

followed by the Priestley method. In 

Hargreaves and Turc methods, the inputs being 
the same, AET estimated using the Turc method 

has shown much better performance under 

limited combinations when compared to 
Hargreaves. It was also confirmed that the Turc 

and Hargreaves method combination showed 

better performance in estimating AET when 

compared to the Priestley method. Tables 4-7 
showed the summary of the Budyko and Turc 

based AET estimates using modelled PET at 

Waipara station. The performance ranking of 

different ML models and AET methods was like 
the Hyderabad station, whereas the LSTM 

performed the best and RF as the worst. AET 

estimated using PET from all parameters as 
input combinations performed better compared 

to other input combinations with its results 

ranging from (RMSE: 0.01–0.242 mm⁄d, MAE: 

0.02-0.07 mm⁄d and R2: 0.98–0.990). During 
the validation stage at Waipara station, the 

different input combinations like temperature, 

relative humidity, and wind speed (RMSE: 
0.01–0.59 mm⁄d, MAE: 0.02–0.08 mm⁄d and 

R2: 0.77–0.85) played out the best in estimating 

AET for Penman-Monteith method and 

temperature, relative humidity, and solar 
radiation (RMSE: 0.01–0.561 mm⁄d, MAE: 

0.05–0.09 mm⁄d and R2: 0.76–0.84) played out 

the best for the Priestley method. In Hargreaves 

and Turc methods, the performances of all input 

combinations were the same, though the AET 
resulting from ANN, and LSTM performed 

much better than GBR and RF models. Hence, 

it is recommended to use either of these two 
PET models in estimating AET. Considering 

the above-observed results from Tables 4-7 and 

Figures 4-11, the AET estimated using LSTM 

and ANN models are the most robust among the 
five ML modelled PET regardless of under 

which station or input combination, trailed by 

SVR and GBR modelled PET, which could 

accomplish agreeable accuracy in estimating 
AET. LSTM and ANN are both able to simulate 

AET where meteorological information is 

inadequate. Both the AET methods of Budyko 
and Turc gave an outstanding performance. It 

can be concluded that the different ML 

modelled PET estimates employed in 

estimating AET at two different stations have 
performed promising when compared to the 

standard ET estimates. Overall, with respect to 

the ML models, it can be concluded that ANN 
and LSTM can be preferred to model PET and 

AET with all parameters input combination as 

the first preference followed by three 

parameters input combination and then two 
parameters input combination. It can also be 
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revealed that AET is sensitive to the number of 

input parameters used in the PET estimation. It 
is also worth noticing that the accuracy of the 

AET (Budyko and Turc) methods with all 

parameters input combinations was the highest 
in each station. However, one can use the three 

input combination parameters or the two input 

combination parameters (e.g., temperature and 

relative humidity or temperature and wind 
speed) in PET and AET estimations under 

limited data. This study has attempted to 

estimate AET from ML-modelled PET and 
concluded that this could be used in the future 

for different case studies. Using the five 

different ML models: ANN, LSTM, GBR, 

SVR, RF, and different empirical methods, 
different AET estimates were developed. The 

models were analysed and compared in terms of 

prediction accuracy, generalization ability, 
complexity/simplicity of the modelling 

approach, and model usage. The comparison 

was conducted to identify the most efficient 

technique out of the studied five ML techniques 
to predict the PET in developing AET 

estimates. The results of the ML models were 

compared with those of the five empirical 
methods and two AET modelled methods to 

identify the possible advantages of the proposed 

models over one of the available methods for 

the estimation of AET under limited data. 
Although the generated models, based on error 

measures, are performing well and are similar, 

they use different combinations of inputs with 
different mathematical structures. This 

demonstrates that precise identification of the 

hydrometeorological variables driving the AET 

process is not a straightforward task, where 
different combinations of inputs may result in 

good AET estimates. Among the proposed 

models in this study, Budyko and Turc are both 
equation-based methods. Such explicit 

equation-based methods are more appealing to 

hydrological implementations for ungauged 

basins because of the transparency and the 
simplicity of their application. The 

meteorological variables that were observed to 

have the most significant contribution in 

modelling PET were the same for AET 
methods. This was observed using five different 

ML models, which could capture the most 

relevant meteorological variables. According to 
the observed two AET methods, the 

meteorological variables that were found to be 

most important in predicting AET (large-scale) 

were net precipitation, radiation, and 

temperature. Radiation is a well-known variable 

that serves as an energy source and is one of the 
critical components of the ET mechanism. The 

surface soil moisture, surface soil temperature, 

and turbulent sensible heat flux are a few other 
essential elements that shape the physics of 

AET (Wang et al., 2017). The physical 

description of the AET mechanism explains the 

importance of soil moisture and its complex 
interaction with other land-atmosphere 

variables in the AET process at daily time scales 

(Dingman, 2015; Wang et al., 2017). It was 
interesting to investigate the level of cause and 

relationship between meteorological variables 

such as temperature, relative humidity, solar 

radiation, and wind speed involved in AET 
variations. To make this comparison, the time 

series of PET and AET using temperature, 

relative humidity, solar radiation, and wind 
speed were visually compared over a typical 

time window. The comparison was carried out 

on daily time series data for both stations. It can 

be concluded that temperature varies slightly 
over time compared to other variables. It can 

also be noted that the temperature and solar 

radiation gradually decrease over time, 
resulting in a lower value. As a result, 

precipitation and temperature influence the 

AET estimation over a daily time scale. Because 

the process of AET is not fully understood, it is 
challenging to mechanistically capture the 

interactions that exist among the state variables 

to present a mathematical relationship between 
AET and highly correlated meteorological 

variables. Explicit ML models demonstrated 

their ability to efficiently capture PET 

variations in estimating AET and to induce 
symbolic estimation models, which are 

primarily dominated by net radiation, 

temperature, and wind speed. 
 

4. Conclusion 

 

The AET over semi-arid climatic conditions 
of Hyderabad, Telangana, (India), and Waipara 

(New Zealand) was estimated using ML 

modelled PET with different empirical methods 

using Budyko and Turc methods. The Penman-
Monteith model-based AET was considered as 

the standard reference method. The daily AET 

values were estimated using PET obtained from 
five different ML techniques, namely LSTM, 

ANN, SVR, GBR and RF, using different input 

combinations. The four input variable 

combinations such as maximum and minimum 



44                                                                                           F. Mohammadi et al., / Sustainable Earth Review     2(3)  2022    28-46 

 

air temperature, relative humidity, solar 

radiation, and wind speed; three input variable 
combinations such as average air temperature, 

relative humidity, and solar radiation; two input 

variable combinations such as temperature and 
solar radiation; and temperature and wind 

speed. The study investigated that the best 

performance was when all input variable 

combinations were used. However, the study 
also found that even three input variable 

combinations or two combination input variable 

combinations can provide identical results. The 
study also investigated that the two methods 

Turc and Budyko performed equally well with 

good R2 values. The results were discussed and 

compared with the results of alternative 
methods of PET calculation, such as the 

radiation-based methods of Priestly-Taylor, the 

temperature-based methods of Hargreaves, and 
Turc. The correlation coefficient values suggest 

that precipitation and temperature are the most 

crucial factors, followed by solar radiation, 

wind speed, and relative humidity, respectively 
for both regions. For both the regions, LSTM 

and ANN were found to be more effective than 

the other techniques in identifying the most 
relevant meteorological predictors. It can be 

concluded that for the two regions, temperature 

and solar radiation have a maximum correlation 

with AET estimates of Penman-Monteith 
models compared to relative humidity and wind 

speed. The Turc model used temperature and 

solar radiation as input variables and showed 
high accuracy with all ML models in estimating 

AET. In contrast, relative humidity has the least 

correlation with the AET estimates. Due to the 

lower dependency of relative humidity on the 
AET estimates, the Priestly-Taylor model has 

lower accuracy than ML models compared to 

the Turc model. The results also showed that the 
AET obtained from PET using LSTM and ANN 

models could offer the most remarkable 

performance among four tested models 

regardless of station or input combination, 
trailed by SVR and GBR models, which could 

likewise accomplish moderately reliable 

performance. The study concludes that the 

empirical models work well with data-driven 
algorithms that consider the climate variables 

have a high dependency on the standard PET 

estimates in calculating AET. Such studies can 
be implemented for the development of ML 

models statistically dependent on PET in AET 

estimates. The study demonstrated that the 

modelling of PET through the LSTM and ANN 

techniques gave better AET estimates that 

proved with their performance criterion, i.e., R2 
as 0.99. The study concluded that the 

performance of the AET methods varies 

according to the number of inputs and the 
predicted time step. Overall, results are of 

significant practical use when limited climate 

data is available 85 to estimate the AET. So, it 

can be concluded that even if not all parameter 
information is available in a particular station, 

the three-parameter combination can be used, or 

the two combinations, which are temperature 
and wind speed or temperature and relative 

humidity values, to calculate AET using 

modelled PET. It was also concluded that the 

equation-based methods of Budyko and Turc, 
which were presented in this study, are not the 

only capacity of the methods as an evolutionary 

methodology that uses ML techniques. 
However, they can also be implemented to 

evolve program-based models and estimate 

AET in different regions. These ML models 

effectively determine the best input variables 
for modelling small- and large-scale PET 

variations in generating AET. Further, the 

modelled PET was efficient in estimating AET 
for two different stations. However, they have 

the potential to provide deep insight into the 

larger-scale variations of AET, such as diurnal 

variations. It should also be noted that no single 
ML technique can always capture all complex 

processes. As a result, various techniques may 

be capable of accurately predicting various 
challenging components of hydrology.  
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