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1. Introduction 

Air pollution is one of the most serious health 

threats today. This invisible killer claims the lives 

of many people annually. Numerous pollutants 

are present in the atmosphere, with ozone being 

one of the most dangerous, capable of causing 

severe health damage and premature mortality 

(Xiong et al., 2022). According to the World 

Health Organization, air pollution is a leading 

cause of premature death, accounting for 

approximately 4.2 million deaths globally each 

year due to lung cancer, heart disease, respiratory 

illnesses, and more. The rapid development of the 

economy, population growth, increasing 

industrialization, and growing transportation 

needs have all contributed to heightened 

environmental pollution, including air pollution 

(Juarez and Petersen, 2021). 

Air pollutants originate from a combination of 

anthropogenic (vehicles, power plants, etc.) and 

biogenic (soil and vegetation) sources (Aljanabi 

et al., 2020). Nitrogen dioxide (NO2), O3, sulfur 

dioxide (SO2), and carbon monoxide (CO) are 

key indicators of air pollution (Carbo-Bustinza et 

al., 2022). Primary air pollutants are emitted 

directly from a natural or human-made process, 

such as ash from a volcanic eruption, carbon 

monoxide gas from motor vehicle exhaust, or 

sulfur dioxide released from industries. Ground-

level ozone as a major secondary pollutant, has 

been the subject of many studies in recent years 

(Wang et al., 2017; Maji et al., 2020; Ou et al., 

2020; Zhao et al., 2021). Ozone is generated 

through chemical reactions of nitrogen oxides 

and volatile organic compounds in the presence  
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One of the significant challenges facing developing countries is combating air 

pollution and improving air quality. Therefore, analyzing changes in air 

pollutants can provide valuable information for experts to analyze air quality. 

The TROPOMI sensor on the Sentinel-5 satellite enables the tracking of gaseous 

pollutants. In this study, using GEE (Google Earth Engine), the products of CO, 

O3, NO2, and SO2 pollutants were retrieved, and their average concentrations 

were mapped at the spatial scale of Razavi and South Khorasan provinces in the 

period 2018-2023. Additionally, the inverse distance weighting (IDW) method 

was used for annual data from five air quality monitoring stations. The results of 

this research showed that the spatial distribution of the concentration of these 

pollutants increased from Razavi and South Khorasan provinces, with the highest 

values recorded in the north, northeast, and center of Khorasan Razavi province. 

Also, the spatial distribution of the concentration of measured pollutants using 

the IDW model showed that the highest concentration dispersion of pollutants 

was recorded at the Mashin Abzar, Khiam, Sajad, and Tarog stations. To 

investigate the overall ability of the TRPOPMI sensor to estimate atmospheric 

pollutants, the coefficient of determination (R²) was used. The results showed 

that the monitoring values using Sentinel-5 satellite images correlate at least 

0.76% for CO, 0.85% for O3, 0.79% for NO2, and 0.78% for SO2 with the values 

monitored by air quality monitoring stations. 
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of favorable meteorological conditions, e.g., 

intense solar radiation, low humidity, high 

temperature, and low winds (Wang et al., 

2017). Ozone concentration exhibits certain 

spatiotemporal changes and involves nonlinear, 

strong coupling and multivariate problems 

(Ezimand and Kakroodi, 2019; Su et al., 2020). 

In addition to emission sources, regional 

climate, and topography, which influence the 

transport, dispersion, and chemical 

transformations of pollutants, play a crucial role 

in air pollution (Tiwari et al., 2015). The 

following section provides a brief overview of 

some of the primary air pollutants examined in 

this paper.    

Carbon monoxide is one of the most common 

and most poisonous air pollutants. Carbon 

monoxide is a hazardous gas mainly produced 

from the incomplete combustion of carbon. 

About two-thirds of carbon monoxide 

emissions are caused by human activities. Some 

of these include burning crop residues, fossil 

fuel combustion, and methane oxidation 

(Saxena and Naik, 2019). Due to its relatively 

short lifetime, carbon monoxide does not mix 

well in the troposphere. However, the emission 

of carbon monoxide into the atmosphere can 

affect the lifetime of methane and the 

production of tropospheric carbon dioxide and 

ozone, and therefore has a significant impact on 

global climate change (Ghandi et al., 2022). 

Coal, oil, and several impure fuels contain 

sulfur as well as various organic compounds. 

The primary human source of sulfur dioxide 

emissions is the presence of sulfur in fossil 

fuels, which is released upon combustion. 

Relatively small amounts of sulfur are also 

released from wildfires, soils, and vegetation 

(Saxena and Naik, 2019). Large coal-fired 

power plants are the biggest sources of sulfur 

dioxide in the world, leading to the production 

of smog and acid rain, which in turn cause 

respiratory and lung diseases (Greenberg et al., 

2016). Among the various pollutants in the 

atmosphere, nitrogen oxides are considered one 

of the most important pollutants and toxic gases 

(Dickerson et al., 2019; Park et al., 2021). 

Millions of tons of nitrogen dioxide and nitric 

oxide are produced annually due to human 

activities, especially the combustion of fossil 

fuels at high temperatures. Nitrogen dioxide, 

when combined with moist air, produces nitric 

acid, which causes severe corrosion of metals. 

Also, in high concentrations, it causes fog and 

significantly reduces visibility (Park et al., 

2021). Nitrogen oxides are also known as 

"indirect greenhouse gases" because they enter 

the upper troposphere through lightning and 

play an important role in global warming by 

producing ozone (Grewe et al., 2012; Finney et 

al., 2016). 

Ground-level ozone is a pollutant found near 

the Earth's surface (Pan et al., 2023). Unlike the 

protective ozone layer in the stratosphere that 

shields us from harmful ultraviolet radiation, 

ground-level ozone (henceforth referred to as 

ozone) can pose a threat to human health 

(Lingxia et al., 2023). Ozone can harm plants 

by reducing their ability to absorb sunlight and 

essential nutrients. It can also damage forests 

and other ecosystems (Cheng et al., 2023). 

Ozone production involves a complex series of 

chemical reactions. Nitrogen dioxide (NO2) 

absorbs sunlight energy and breaks down into 

nitric oxide (NO) and an oxygen atom (Ehteram 

et al., 2023). Nitric oxide (NO) reacts with 

oxygen molecules (O2) to form ozone (O3). As 

ozone is a major air pollutant, accurate 

prediction and monitoring of its concentration 

is essential. Forecasting ozone concentrations is 

crucial for issuing timely warnings and 

advisories, enabling vulnerable populations to 

avoid outdoor activities during periods of high 

ozone (Vicente et al., 2024). 

In light of the growing concern over air 

pollution, numerous studies have been 

undertaken to better understand and mitigate its 

impacts. A notable contribution to this field 

comes from the research of Hadian and 

Moradizadeh (2023), who conducted a study 

modeling the spatial distribution of nitrogen 

dioxide (NO2) and ozone (O3) pollutants. They 

achieved this by combining data from ground-

based monitoring stations and high-resolution 

Sentinel-5 satellites. The Kriging interpolation 

method was employed to estimate pollutant 

concentrations between monitoring stations. 

The model demonstrated a robust performance, 

with Root Mean Square Errors (RMSE) of 2.79 

ppb for NO2 and 0.86 ppb for O3, indicating a 

strong correlation between the predicted and 

observed values.  Ghanbari and Eisazadeh 

(2021) focused on modeling the concentration 

density of ozone and nitrogen oxide using 

Geographic Information Systems (GIS) and 

compared their results with Sentinel-5 data on 

Google Earth Engine. They utilized two 

methods: Inverse Distance Weighting (IDW) 

and Sentinel-5P NRTI O3: Near Real Time. The 

model exhibited the best performance in 2008 
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(R2=0.9188) and 2009 (R2=0.9134), while the 

worst performance was observed in 2018 

(R2=0.476), suggesting potential variations in 

model accuracy over time. Gharibi and 

Shayesteh (2021) focused on using Sentinel-5 

satellite images to identify air pollution 

hotspots in Iran. To assess clustering patterns, 

the G statistic was used, and Gi statistics were 

employed to identify hot spots for each 

pollutant within a GIS environment. The spatial 

distribution pattern of pollutants was 

determined using the Moran's I index. The 

results of the G statistic showed that the 

pollutants exhibited a clustered distribution 

pattern and spatial autocorrelation (Moran's 

I=0.72). Rais-Pour and Asakereh (2020) 

investigated the satellite-based monitoring of 

ozone layer changes in Iran's atmosphere. Data 

from the AIRS instrument on the AQUA 

satellite was used to analyze ozone trends over 

Iran. The findings indicated a yearly decline in 

ozone levels in Iran's atmosphere. Spatially, 

ozone levels generally increased from south to 

north. Wang et al (2022) developed a machine-

learning model to estimate ground-level ozone 

concentrations in California using TROPOMI 

and high-resolution meteorological data. By 

utilizing the total ozone column from 

TROPOMI along with ozone profile 

information retrieved by the Ozone Monitoring 

Instrument (OMI), they created a model to 

predict daily maximum 8-hour average ground-

level ozone concentrations with a 10 km spatial 

resolution. The model's validation resulted in 

an R² of 0.84 and an RMSE of 0.0059 ppb, 

indicating a good agreement between model 

predictions and observations. Quesada-Ruiz et 

al (2019) examined the benefits of ozone 

observations from Sentinel-5 and future 

Sentinel-4 missions in the troposphere. 

Simulated data consisting of six eigenvectors 

were used to minimize the dataset size by 

removing the noise-dominated part of the 

observations. The results demonstrated that 

satellite data clearly provide a direct added 

value at around 200 hPa for the entire 

absorption period and the entire European 

domain. Zhao et al. (2021) investigated 

tropospheric ozone changes during the COVID-

19 pandemic in China. This paper presents 

tropospheric ozone profiles and columns 

retrieved from UV radiation measured by the 

TROPOMI instrument on the Sentinel-5 

satellite based on the optimal estimation 

method. The results showed that both the 

tropospheric ozone column and stratospheric 

ozone have a very good agreement with the 

validation data and also tropospheric ozone as 

the primary option of secondary air pollutants 

did not decrease simultaneously but increased 

in some areas. 

Among various methods for monitoring air 

pollution, remote sensing techniques using 

instruments and technologies have gained 

significant importance due to the continuous 

nature of their data generation in both time and 

space. In these methods, information about air 

pollutants is transmitted through 

electromagnetic radiation, allowing for high 

spatial and temporal resolution data collection, 

as well as vertical profile measurements 

(Saxena and Naik, 2019). Satellite-based 

remote sensing of air pollutants and trace gases 

provides a suitable platform for understanding 

the current state of air quality and future climate 

change on a global scale. On the other hand, 

achieving the highest possible accuracy in 

pollutant monitoring is crucial due to various 

considerations such as chemical composition, 

lifetime, emission sources, and so on (Saxena 

and Naik, 2019). In this study, the GEE system 

was used to prepare all information data. GEE 

is an open-source spatial analysis platform that 

enables users to visualize and analyze satellite 

images of the planet earth. The many 

capabilities of the Google Earth Engine system 

have been reviewed and approved for checking 

all kinds of hydrometeorology and hydrological 

criteria (Yousefi et al., 2022). 

The examination of these issues and challenges 

using the most advanced online geographic 

information systems (SOGIS) has significantly 

accelerated the problem-solving process. In 

contrast, in the past, these problems were 

analyzed and solved slowly and over a long 

period using desktop software (Jamali and 

Abdolkhani, 2009). Remote sensing methods 

utilize satellite data and images to monitor 

various quantities, including pollution 

monitoring. Satellite data, due to their free 

availability, high spatial resolution, and wide 

coverage of the study area, can be used for 

medium-term and long-term forecasting and 

early warning regarding air quality (Xian, 

2015). On the other hand, satellites, by orbiting 

the Earth and monitoring the same area at 

different times, provide the opportunity to 

conduct studies over various periods. Long-

term studies of pollutants are important in 

providing accurate information to managers in 
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order to develop strategies to control air 

pollution crises. One of the newest satellites for 

air pollution monitoring is Sentinel-5, part of 

the European Space Agency's Copernicus 

program. Since its launch in 2018, Sentinel-5 

has provided reliable and efficient data for 

studying atmospheric aerosols, Sulfur dioxide, 

nitrogen dioxide, carbon monoxide, and ozone. 

Therefore, by processing data from this 

satellite, valuable information about air 

pollutants can be obtained (Theys et al., 2016). 

In this research, the objective is to evaluate the 

capabilities of the TROPOMI sensor on 

Sentinel-5 for air pollution monitoring and to 

examine trends in pollutant levels in the study 

area. The results of this research can provide a 

suitable tool for offering solutions to 

policymakers at various levels. 

2. Material and Methods 

     In this research, Level 3 (L3) images from 

the TROPOMI (Tropospheric Monitoring 

Instrument) sensor the Sentinel-5 satellite were 

used to monitor pollutant concentrations 

(https:// developer s.google.com /earth-engine 

/datasets/ catalog). All S5P datasets, except for 

CH4, have two versions: Near Real-Time 

(NRTI) and Offline (OFFL). Only CH4 data is 

available in the OFFL version. NRTI data 

covers a smaller area compared to OFFL data 

but becomes available faster after acquisition. 

OFFL data contains data from one orbit (which, 

due to half the Earth being dark, only contains 

data from one hemisphere).  

The bands used in this study to extract different 

pollutants are presented in Table 1. 

This study initially used the Python 

programming language within the Google Earth 

Engine (GEE) platform to retrieve satellite 

images of CO, SO2, NO2, and O3 pollutant 

concentrations. Various products, as listed in 

Table 1, were called within the study region's 

boundaries over the specified period to monitor 

atmospheric pollutants and identify pollution 

sources in the province. Consequently, a raw 

function was defined for each Sentinel-5 

product. In each function, the average pollutant 

concentration was calculated within the study 

boundaries and the defined time frame. Each 

function had multiple inputs, with the first input 

being a dataset that included satellite images 

with a start time (10/07/2018) and an end time 

(30/12/2023). Each function was also applied to 

a specific band associated with the pollutant 

image set in question. Therefore, for each 

pollutant, there was a specific dataset and band 

based on Table 1. Another variable was defined 

to clip the retrieved satellite images, resulting 

from the first variable, based on the study 

boundaries. The output variable was also a set 

of retrieved images defined within the specified 

temporal and spatial filter with a spatial 

resolution of one kilometer. The output 

obtained from the average pollutant 

concentration for the period from 10/07/2018 to 

30/12/2023 was calculated in these filters. 

Then, the spatial map of the average pollutant 

concentration was analyzed in ArcMap 

software. 

Table 1.  Specifications of Sentinel-5 satellite products for CO, NO2, SO2 and O3 pollutants 
Description Max Min Unit Bond Data set Product 

Vertically integrated CO 

column density. 
4.64 -279 mol/m^2 

CO_column_n

umber_density 

COPERNICUS 

/S5P/NRTI/L3 
_CO 

Sentinel-5P NRTI 
CO: Near Real-Time 

Carbon 

Monoxide 
Total vertical column 

of NO2 (ratio of the slant 

column density of NO2 and 
the total air mass factor) 

 

0.009

6 
-0.0006 mol/m^2 

NO2_column_n

umber_density 

COPERNICUS 

/S5P/NRTI/L3 
_ NO2 

Sentinel-5P NRTI 
NO2: Near Real-

Time Nitrogen 

Dioxide 

Total atmospheric 
column of O3 between the 

surface and the 

top of the atmosphere, 
calculated with 

the DOAS algorithm 

0.24 -48 mol/m^2 
SO2_column_n

umber_density 

COPERNICUS 
/S5P/NRTI/L3 

_ SO2 

Sentinel-5P NRTI 

SO2: 
Near Real-Time 

Sulphur 

Dioxide 

vertical column density, 
calculated using the DOAS 

technique. 

0.272 0.0047 mol/m^2 
O3_column_nu

mber_density 

COPERNICUS 
/S5P/NRTI/L3 

_O3 

Sentinel-5P NRTI O3: 
Near Real-Time 

Ozone 
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This study initially used the Python 

programming language within the Google Earth 

Engine (GEE) platform to retrieve satellite 

images of CO, SO2, NO2, and O3 pollutant 

concentrations. Various products, as listed in 

Table 1, were called within the study region's 

boundaries over the specified period to monitor 

atmospheric pollutants and identify pollution 

sources in the province. Consequently, a raw 

function was defined for each Sentinel-5 

product. In each function, the average pollutant 

concentration was calculated within the study 

boundaries and the defined time frame. Each 

function had multiple inputs, with the first input 

being a dataset that included satellite images 

with a start time (10/07/2018) and an end time 

(30/12/2023). Each function was also applied to 

a specific band associated with the pollutant 

image set in question. Therefore, for each 

pollutant, there was a specific dataset and band 

based on Table 1. Another variable was defined 

to clip the retrieved satellite images, resulting 

from the first variable, based on the study 

boundaries. The output variable was also a set 

of retrieved images defined within the specified 

temporal and spatial filter with a spatial 

resolution of one kilometer. The output 

obtained from the average pollutant 

concentration for the period from 10/07/2018 to 

30/12/2023 was calculated in these filters. 

Then, the spatial map of the average pollutant 

concentration was analyzed in ArcMap 

software. 

 
2.1. GIS technology and spatial modeling 

 

GIS provides spatial information, patterns, and 

sensitivity to incident variables. These are 

essential for future initiatives and planning to 

reduce spatial vulnerability and promote 

sustainable development. GIS technology also 

provides for management strategies and 

executive tasks that are vital in the field of 

disaster management. In addition, spatio-

temporal mapping of disaster variables may 

provide historical trends in hazard severity, 

magnitude, and area. 

 
2.2. Inverse distance weighted model (IDW)  

 

A deterministic interpolation model is used to 

evaluate the spatial sensitivity, pattern, 

variability, and concentration of georeferenced 

variables. This model is used to quantify the 

weighted values of the unsampled points 

through the inverse distance function of the 

values of the spatial graticule reference points 

(Gong G et al., 2014). Equation (1) is calculated 

for the weight power (ki) of the IDW model. 

 
𝜆i = (Di − 𝛼)𝜆i = (Di − 𝛼)/∑𝑖=1

n  Di − 𝛼 

In equation (1), λi is the weight of station i, Di 

is the distance from the station to the unknown 

point, and α is the weighting power. 

 
2.3. Validation  

 

To validate the results obtained in this study, 

five ground-based air quality monitoring 

stations in Razavi and South Khorasan 

Provinces were selected. The accuracy of the 

monitoring results from these five stations was 

compared with satellite-based monitoring using 

Sentinel-5's TROPOMI imagery. The 

coefficient of determination (R²) was calculated 

using equation (2) to assess the level of 

agreement between the two datasets. 

𝑅𝑟 =

(

 
 ∑𝑖=1

𝑛  (𝑋𝑖−𝑋1̅̅̅̅ )(𝑌𝑖−�⃐� 𝑖)

√∑𝑖=1
𝑛  (𝑋𝑖−�⃐� 𝑖)𝑟⋅√∑𝑖=1

𝑛  (𝑌𝑖−�⃐� 𝑖)

𝑟

)

 
 

𝑟

 

 

n represents the number of data, X̅i is the 

average pollutant of the station, Y̅i is the 

average pollutant calculated from the meter Xi 

is the pollutant values of the station and Yi is 

the pollutant values calculated from the meter. 

2.3. Study area 

 

Fig. 1 show the location of the studied area of 

Razavi and South Khorasan provinces; The 

area of South Khorasan province is 151.913 

km2 and Razavi Khorasan is 117.769 km2. 

South Khorasan province is located in the east 

of Iran and on the northeastern edge of the Lot 

plain. The location of South Khorasan province 

is limited to Razavi Khorasan province from the 

north, Afghanistan province from the east, 

Kerman and Sistan and Baluchistan provinces 

from the south, and Yazd and Isfahan provinces 

from the west. The location of Razavi Khorasan 

province is limited to North Khorasan province 

and Turkmenistan country from the north, 

Afghanistan and Turkmenistan countries from 

the east, South Khorasan province from the 

south, and Semnan province from the west. In 

terms of geographical location, South Khorasan

(1) 

(2) 
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 province is between 31°20' to 33°31' north 

latitude and 57°57' to 59°40' east longitude, and 

Razavi Khorasan province is between 56°19' to 

61°16' east longitude and 33°52' minutes to 

37°42' north latitude. 

 

 
 Fig. 1.  Location of the study area 

 

3. Results and discussion  
 

     After executing the programming in the 

GEE environment, spatial maps of pollutant 

hotspots for CO, NO2, O3, and SO2 were 

produced separately based on the average 

concentration of each pollutant from 2018 to 

2023. Subsequently, to identify the hotspots of 

all pollutants, raster maps for each pollutant 

were created in Fig. 2. 

The GEE platform provides high-resolution 

images of CO concentrations. Carbon 

monoxide (CO) is an important atmospheric 

trace gas for understanding tropospheric 

chemistry. In some urban areas, it is the main 

air pollutant. TROPOMI on the Sentinel 5 

Precursor (S5P) satellite observes global CO 

abundance by exploiting ground-based 

radiance measurements in the shortwave 

infrared (SWIR) 2.3-micrometer spectral range 

of the solar spectrum in both clear and cloudy 

skies. TROPOMI clear-sky observations 

provide total CO columns with sensitivity to the 

tropospheric boundary layer. For cloudy 

atmospheres, column sensitivity varies with the 

light path. Fig. 2a show a spatial map of carbon 

monoxide, where the highest levels of this 

pollutant are observed in the north, northwest, 

center (Khorasan Razavi province), and 

northwest and west of South Khorasan 

province. The amount of CO pollutant has 

increased from Khorasan Razavi province to 

South Khorasan province. This dataset provides 

real-time high-resolution images of the total 

ozone column. In the stratosphere, the ozone 

layer protects the biosphere from harmful 

ultraviolet solar radiation. In the troposphere, it 

acts as an efficient cleansing agent, but at high 

concentrations, it is also harmful to human 
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health, animals, and vegetation. Ozone is also a 

significant greenhouse gas contributing to 

climate change. Since the discovery of the 

Antarctic ozone hole in the 1980s and the 

subsequent Montreal Protocol, which regulates 

the production of ozone-depleting substances 

containing chlorine, ozone has been routinely 

monitored from the ground and from space. Fig. 

2b shows a spatial map of ozone. An 

examination of ozone pollution hotspots 

indicates that the amount of this pollutant has 

increased from South Khorasan Province to 

Khorasan Razavi Province, with the highest 

amount of ozone recorded in the north and 

northeast of Khorasan Razavi Province.    

This dataset provides near real-time, high-

resolution images of NO2 concentrations. 

Nitrogen oxides (NO2 and NO) are crucial trace 

gases in the Earth's atmosphere, present in both 

the troposphere and stratosphere. These gases 

enter the atmosphere as a result of human 

activities (primarily the combustion of fossil 

fuels and biomass burning) and natural 

processes (wildfires, lightning, and 

microbiological processes in the soil). NO2 is 

used to represent the concentration of total 

nitrogen oxides because, during the day in the 

presence of sunlight, a photochemical cycle 

involving ozone (O3) converts NO to NO2 and 

vice versa on a timescale of several minutes.  

Fig. 2c shows the spatial map of nitrogen 

dioxide. The highest levels of NO2 pollutants 

were recorded in the northwest and central 

regions of Khorasan Razavi province, and the 

amount of this pollutant decreases from 

Khorasan Razavi province to South Khorasan 

province. This dataset provides near real-time 

high-resolution images of atmospheric sulfur 

dioxide (SO2) concentrations. Sulfur dioxide 

(SO2) enters the Earth's atmosphere through 

natural and human processes. SO2 plays an 

important role in local and global scale 

chemistry and its effects range from short-term 

pollution to impacts on climate. Only about 

30% of the SO2 emitted comes from natural 

sources, and the majority is of human origin. 

SO2 emissions negatively affect human health 

and air quality. SO2 affects the climate through 

radiative forcing and the formation of sulfate 

aerosols. SO2 emissions, along with volcanic 

ash, can also pose a threat to aviation activities. 

The S5P/TROPOMI satellite samples the 

Earth's surface with a revisit time of one day 

and a spatial resolution of 3.5x7 km, which 

allows for detailed feature discrimination, 

including the detection of much smaller SO2 

columns. Fig. 2d shows a spatial map of sulfur 

dioxide. According to the results, the highest 

amount of this pollutant was recorded in the 

city of Mashhad, Khorasan Razavi province. 

 

 
Fig. 2. Hotspots of CO, NO2, O3, and SO2 pollutants in the Razavi and South Khorasan Provinces
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3.1. Regional Analysis of County Contributions to 

Air Pollutants 

 

Fig. 3 shows maps of the average concentration 

of each pollutant based on the Border working 

units of provinces and cities from 2018 to 2023. 

The value of each pixel in each region 

represents the average concentration of 

pollutants in that area. The highest share of 

nitrogen dioxide comes from the counties of 

Mashhad, Binalood, Golbahar, and Nishapur in 

Khorasan Razavi province. The highest share of 

carbon monoxide comes from the counties of 

Sarakhs, Kalat, Dargaz, Mashhad, and 

Binalood in Khorasan Razavi province and the 

county of Tabas in South Khorasan province. 

The highest share of sulfur dioxide comes from 

the county of Sarakhs in Khorasan Razavi 

province. Also, the highest share of the ozone 

pollutants comes from the counties of Sarakhs, 

Kalat, Dargaz, and Quchan in Khorasan Razavi 

province. 

 

 

 
               Fig. 3. Contribution of air pollutants based on county boundaries in Razavi and South Khorasan Provinces 

3.2. Slope of Annual Average Pollutant Changes 

  

The results of air pollutant monitoring using 

Sentinel-5 images between 2018 and 2023 are 

shown in Fig. 4, Fig. 5, Fig. 6, and Fig.7 In these 

diagrams, the daily concentration values of 

pollutants are displayed annually. The range of 

annual average changes in CO pollutant levels 

from 2018 to 2023 is between 0.024 and 0.032 

mol/m², O3 pollutants between 0.118 and 0.152 

mol/m², NO2 pollutants between 0.0001 and 

0.0010 mol/m², and SO2 pollutant between 

0.001 and 0.007 mol/m². 
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Fig. 4.  Annual average changes in atmospheric CO pollutants between 2018 and 2023 

 
Fig. 5.  Annual average changes in atmospheric O3 pollutants between 2018 and 2023
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Fig. 6.  Annual average changes in atmospheric NO2 pollutants between 2018 and 2023 

 

 
Fig. 7.  Annual average changes in atmospheric SO2 pollutants between 2018 and 2023
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3.3. Heatmap 

The term "heatmap" has been used in statistical 

analyses for many years. It is a statistical matrix 

used to show the correlation between different 

variables (Dziuda, 2010). This visualization 

method is defined as "a graphical display of 

data where values in a matrix are represented as 

colors". Wilkinson and Friendly (2009) find 

"the earliest sources of this display in late 19th 

century publications" and calls them "the most 

widely used displays in bioinformatics". 

Ultimately, this form of statistical analysis 

evolved into the creation of cartographic heat 

maps. Heatmaps are so named because of their 

color schemes, which change from blue to red 

with increasing values, giving a "warmer" 

appearance (DeBoer, 2015). Heatmaps have 

become one of the most popular methods for 

data representation. A heatmap is a graphical 

representation of data where values contained 

in a matrix are represented as colors. Numerous 

variations of heatmaps exist, such as web 

heatmaps and treemaps (Zhao et al., 2014), 

which provide a more visually appealing 

representation for spatiotemporal analysis. 

conventional charts, such as scatter plots and 

line charts, are commonly used for exploratory 

analysis of air pollution time series data without 

spatial analysis (Janssen et al., 2013). However, 

after analyzing the characteristics of different 

chart types, researchers have found that 

heatmaps are very suitable for displaying time 

series data and that a calendar view is useful for 

displaying years of daily data (Van Wijk and 

Van Selow, 1999). This method presents a 

novel perspective on time series data and a tool 

for comprehensively understanding ordinary 

line charts or matrix charts that are not 

presented due to the fact that the data is divided 

into several sections based on season or year. 

Fig. 8 shows the analysis of heat maps on each 

of the pollutants in the period considered. Red 

(hot) spots have larger values, and this period 

has a higher pollution status compared to other 

times. Blue (cold) spots have smaller values, 

and the pollution status is lower compared to 

other times. As can be seen, the amount of air 

pollutants (CO, O3, NO2, and SO2) has 

increased from 2018 to 2023. 

 
Fig. 8. Cluster analysis of heatmaps for CO, O3, NO2, and SO2 pollutants based on year and mont
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To further analyze and analyze the results 

obtained in this research using Sentinel-5 

TROPOMI sensor images, five terrestrial air 

pollution monitoring stations were selected in 

Razavi and South Khorasan Provinces, and the 

monitoring results of these five stations were 

compared with satellite. Pollutant-based 

monitoring using Sentinel-5 imagery. The 

spatial distribution of the measured 

concentrations of pollutants (CO, O3, NO2, and 

SO2) for the period 2018 to 2023 is shown in 

Fig. 9 According to the results obtained based 

on Fig. 9a, it can be said that the red areas are 

large urban areas and the amount of CO 

pollution in these areas is higher than other 

areas. Therefore, the Sajjad and Khayyam 

stations have more CO2 pollution than the other 

two stations. Toruq and machine tool stations 

have average concentration and dispersion of 

this pollutant, and the amount of CO in these 

two stations is close, while Birjand station has 

the lowest amount of this pollutant in the 

studied area. Also, according to the study of 

Kafi et al. (2023) in connection with the thermal 

map of a part of the studied area and comparing 

its results with the final ozone map, it is clear 

that areas with higher temperatures have higher 

ozone levels. 

 Furthermore, based on Fig. 9b, we can 

conclude that the machine tool station contains 

the highest amount of O3 pollutants compared 

to the other four stations. The Toruq station has 

a moderate concentration and distribution of 

this pollutant, and the amount of this pollutant 

in the Birjand station is lower than other 

stations. Similarly, in Fig. 9c, it is observed that 

the machine tool and Toruq stations have the 

highest amount of NO2 pollutants. The 

Khayyam, Sajjad, and Birjand stations have a 

moderate concentration and distribution of this 

pollutant, and the amount of NO2 in these three 

air quality monitoring stations is similar. Based 

on Fig. 9d, it can be stated that the Toruq station 

contains the highest amount of SO2 pollutants. 

Also, the Khayyam and Sejad stations are in a 

moderate state in terms of the concentration and 

distribution of this pollutant. Similarly, the 

Machine Tools and Birjand stations are stations 

with the lowest levels of SO2 pollutants. In this 

study, the role of satellite remote sensing in air 

quality monitoring is evident. Table 2 shows 

that the results obtained from Sentinel-5 

satellite images have sufficient reliability, and 

therefore, this tool can be used in continuous 

monitoring and management of air quality in 

the country. With the development of powerful 

cloud processing systems such as the Google 

Earth Engine platform, free services of this 

system can be used in heavy processing. On the 

other hand, considering the low density and 

sometimes the inappropriate distribution of 

ground-based air quality monitoring stations, 

the use of free Sentinel-5 images in monitoring 

changes in pollutant concentrations in all parts 

of the country can be beneficial. Also, a 

comparison of the results of the TROPOMI 

sensor (Fig. 2) and the IDW model (ground 

data, Fig. 9) confirms the accuracy of the 

monitoring performed using Sentinel-5 satellite 

images.  
 

Table 2.  Results of the coefficient of determination (R²) between ground observations and Sentinel-5 satellite images 

The Pollutant CO 3O 2NO 2SO 

Coefficient of determination (R2) 0.76 0.85 0.79 0.78 
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Fig. 9. Spatial distribution of measured pollutant concentrations using the IDW model 

 

4. Conclusion 
  
    Air quality monitoring stations measure 

pollutant concentrations at specific points, thus 

providing high accuracy. However, they only 

cover the areas around the stations and are 

unable to estimate pollutant levels at distances 

farther from the stations. Therefore, relying 

solely on the measurements of these stations 

cannot identify pollution sources. The results of 

pollutant dispersion in the study area indicate 

that estimating the average pollutant 

concentration using remote sensing images can 

be very important for identifying pollution 

sources. Therefore, it is necessary to use 

continuous images that measure pollutant 

levels in the atmosphere daily to locate 

atmospheric pollutant sources. Accurate 

measurement of air pollutants with high spatial 

and temporal resolution to determine how Their 

distribution and effectiveness, as well as 

provide solutions for managers at the provincial 

and national levels, are essential. The use of 

tools and technologies based on remote sensing 

is of great importance due to the nature of 

continuous temporal and spatial data 

production. Sentinel-5 satellite has a high 

capability in imaging and monitoring a large 

number of rare gases as well as suspended 

particles. Therefore, satellite images for 

monitoring air pollutants and locations can be 

very fruitful at a low cost and time-consuming. 

In this research, the capability of the 

TROPOMI sensor on Sentinel-5 satellite in 

monitoring air pollution (four pollutants: CO, 

O3, NO2, and SO2) from 2018 to 2023 has been 

evaluated. Moreover, the trend of changes in 

some pollutants in the Razavi and South 

Khorasan Provinces over the past five years has 

been investigated. The monitoring shows that 

Mashhad is the most polluted city in the study 

area from 2018 to 2023. Furthermore, regional 

analysis of the share of counties in air pollutants 

revealed that the highest share of nitrogen 

dioxide belongs to the counties of Mashhad, 

Binālod, Golbahar, and Nīshābūr in Razavi 

Khorasan Province. The highest share of carbon 

monoxide belongs to the counties of Sarakhs, 

Kalāt, Dargaz, Mashhad, and Binālod in Razavi 

Khorasan Province, and the county of Tabas in 

South Khorasan Province. The highest 

contribution of sulfur dioxide was observed in 

Sarkhes County, Khorasan Razavi Province. 

The highest contribution of ozone was observed 
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in Sarkhes, Kalat, Dargaz, and Quchan counties 

of Khorasan Razavi Province. The spatial 

distribution of pollutant concentrations showed 

an increase from South Khorasan Province to 

Razavi Khorasan Province, with the highest 

values recorded in the north, northeast, and 

center of Khorasan Razavi Province which is 

confirmed according to Gharibi and Shayesteh 

(2022) studies. Additionally, the spatial 

distribution of pollutant concentrations 

measured using the IDW model indicated the 

highest concentrations at the Mashin-e-Abzar, 

Khiam, Sajjad, and Tarq monitoring stations. 

Furthermore, based on the extracted heat maps, 

the level of pollutants has increased from 2018 

to 2023. The main source of this increase can 

be attributed to the population, industrial 

expansion, and the general increase in human 

and industrial activities, which is confirmed 

according to the studies of Shami et al (2021). 

To evaluate the accuracy of the monitoring 

conducted using Sentinel-5 satellite images, 

five air quality monitoring stations in Razavi 

and South Khorasan Provinces were used. The 

results showed that the measurements obtained 

using Sentinel-5 images had a correlation of at 

least 0.76% for CO, 0.85% for O3, 0.79% for 

NO2, and 0.78% for SO2 compared to the 

measurements made by the air quality 

monitoring stations. 
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