Alexander, N., Chanerley, A. & Goorvadoo, N., 2001. A review of procedures used for the correction of seismic data. 10.4203/ccp.73.39, 101-102.
Ambraseys, N.N. & Melville, C.P., 2005. A history of Persian earthquakes. Cambridge, UK, Cambridge University Press.
Berberian, M., 1995. Master "blind" thrust faults hidden under the Zagros folds active basement tectonics and surface morphotectonics. Journal of Tectonophysics, 241, 193-224.
Campbell, K.W. & Bozorgnia, Y., 2006. Campbell- Bozorgnia NGA empirical ground motion model for the average horizontal component of PGA, PGV, PGD, and SA at selected spectral periods ranging from 0.01-10.0 seconds. Pacific Earthquake Engineering Research Center, Berkeley, CA.
Courboulex, F., Virieux, J., Deschamps, A., Gilbert, D. & Zoll, A., 1996. Source investigation of a small event using empirical Green functions and simulated annealing. Geophysical Journal International, 125, 768-780.
DeLorenzo, S., Filippucci, M. & Boschi, E., 2007. An EGF technique to infer the rupture velocity history of a smallmagnitude earthquake. J.Geophys. Res., 113, B10314,
https://doi:10.1029/2007JB005496
Nissen, E., Tatar, M., Jackson, J.A. & Allen, M.B., 2011. New views on earthquake faulting in the Zagros fold- and-thrust belt of Iran. Geophysical Journal International, 186(3), 928-944,
https://doi.org/10.1111/j.1365-246X.2011.05119.x
Hartzell, S., 1978. Earthquake aftershocks as Green's functions. Geophysical Research Letters, 5, 1-4. Haskell, N.A., 1964. Total energy spectral density elastic of wave radiation from propagating faults. Bulletin of the Seismological Society of America, 54, 1811-1841.
Hutchings, L. & Viegas, G., 2012. Application of Empirical Green's Functions in Earthquake Source, Wave Propagation and Strong Ground Motion Studies. In: D'Amico S. (Ed), Earthquake Research and Analysis – New Frontiers in Seismology. Lawrence Berkeley National Laboratory, USA, 87-140.
Hutchings, L., 1987. Modeling near-source earthquake ground motion with empirical Green’s functions. Ph.D Thesis, State University of New York.
Imtiaz, A., Causse, M., Chaljub, E. & Cotton, F., 2015. Is Ground-Motion Variability Distance Dependent? Insight from Finite-Source Rupture Simulations. Bulletin of the Seismological Society of America, 105(2A), 950-962.
Irikura, K., 1991. The physical basis of the empirical Green function method and the prediction of strong ground motion for large earthquake. Proceedings International workshop of seismology and earthquake Engineering, 89-95.
Irikura, K., 1984. Prediction of strong ground motions using observed seismograms from small events. Proceedings of the 8th World Conference on Earthquake Engineering, 2, 465-472.
Jackson, J. & Fitch, T., 1981. Basement faulting and the focal depths of the larger earthquakes in the Zagros Mountains (Iran), Geophys. J. Int., 64, 561-586.
Karasözen, E., Nissen, E., Bergman, E.A. & Ghods, A., 2019. Seismotectonics of the Zagros (Iran) from orogen-wide, calibrated earthquake relocations. Journal of Geophysical Research: Solid Earth, 124, 9109-9129.
https://doi.org/10.1029/2019JB01733
Honoré, L., Courboulex, F. & Souriau, A., 2011. Ground motion simulations of a major historical earthquake (1660) in the French Pyrenees using recent moderate size earthquakes. Geophysical Journal International, 187(2), 1001-1018. https://doi.org/10.1111/j.1365- 246X.2011.05193.x
Mohammadi, F. & Moradi, A., 2019. The Double Difference Relocation of sequence of 2017 Ezgeleh earthquake. 8th International Conference on Seismology and Earthquake Engineering (SEE8), Nov 11-13, Tehran. Iran.
Motazedian, D. & Atkinson, G.M., 2005a. Stochastic finite-fault modeling based on a dynamic corner frequency. Bulletin of the Seismological Society of America, 95, 995-1010.
Motazedian, D. & Atkinson, G.M., 2005b. Earthquake magnitude measurements for Puerto Rico. Bulletin of the Seismological Society of America, 95, 725-730.
Motazedian, D. & Atkinson, G.M., 2005c. Ground-motion relations for Puerto Rico. Geological Society of America, 385, 61-80. Niazi, M., Asudeh, I., Ballard, G., Jackson, J., King, G. & McKenzie, D., 1978. The depth of seismicity in the Kermanshah region of the Zagros Mountains (Iran). Earth and Planetary Science Letters, 40(2), 270-274.
Raghukanth, S.T.G., 2008. Modeling and synthesis of strong ground motion. Journal of Earth System Science, 117, 683-705.
Rezapor, M., Rezaee, R. & Tabatabaiy, S., 2018. Estimation of coda wave attenuation in the Kermanshah. 18th Iranian Geophysics Conference, Tehran, Iran, 509-512.
Shakal, A.F. & Bernreuter, D.L., 1980. Empirical analyses of near-source ground motion. United States.
Somerville, P., Irikura, K., Graves, R., 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismological Research Letters, 70(1), 59-80.
Talebian, M. & Jackson, J., 2004. A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophys. J. Int., 156, 506-526.
Wan, K., Sun, X., Liu, Y., Ren, K., Sun, X. & Luo, Y., 2022. Spatial Coherency Model Considering Focal Mechanism Based on Simulated Ground Motions. Sustainability Journal, 14.
https://doi.org/10.3390/su14041989
Wu, F., 1978. Prediction of strong ground motion using small earyhquakes. In Proceedings of 2nd International Conference on Microzonation Nati, Sci. Found., San Francisco. California, 701-704.
Yoshida, K., Uchida, N., Kubo, H., Takagi, R. & Xu, S., 2022. Prevalence of updip rupture propagation in interplate earthquakes along the Japan trench. Earth and Planetary Science Letters, 578, 117306. https://doi.org/10.1016/j.epsl.2021.117306.