Allahverdi, A. L. I., Kani, E. N., & Yazdanipour, M., 2011. Effects of blast-furnace slag on natural pozzolan-based geopolymer cement. Ceramics-Silikáty, 55(1), 68-78.
Amiri, M., & Aryanpoor, M., 2019. The Effects of High Temperatures on Concrete Performance based on Nanostructural Changes in Calcium Silicate Hydrate (CSH). Concrete Research, 12(4), 69-80.
Brindley, G. W., 1975. Thermal transformations of clays and layer silicates. In Proceedings of the international clay conference (pp. 119-129). Applied Publishers Wilmette, IL.
Bakharev, T., 2006. Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cement and concrete Research, 36(6), 1134-1147.
Bakhtiyari, S., Allahverdi, A., Rais-Ghasemi, M., Zarrabi, B. A., & Parhizkar, T., 2011. Self-compacting concrete containing different powders at elevated temperatures–Mechanical properties and changes in the phase composition of the paste. Thermochimica acta, 514(1-2), 74-81.
Comrie, D. C., & Kriven, W. M., 2004. Composite cold ceramic geopolymer in a refractory application. In Advances in Ceramic Matrix Composites IX, Proceedings (pp. 211-225).
Davidovits, J., 2008. Geopolymer chemistry and applications. Geopolymer Institute.
Deb, P., Nath, P., & Sarker, P., 2015. Drying shrinkage of slag blended fly ash geopolymer concrete cured at room temperature. Procedia Engineering, 125, 594-600.
Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Aliabad, M., Marto, A., & Khorami, M., 2018. Portland cement structure and its major oxides and fineness. Smart structures and systems, 22(2), 425-432.
Huseien, G. F., Mirza, J., Ismail, M., Ghoshal, S. K., & Ariffin, M. A. M., 2018. Effect of metakaolin replaced granulated blast furnace slag on fresh and early strength properties of geopolymer mortar. Ain Shams Engineering Journal, 9(4), 1557-1566.
Hongjian, D., Suhuan , D., & Liu, X., 2014. Durability performances of concrete with nano-silica. Construction and building materials, 73, 705-712.
Kong, D. L., & Sanjayan, J. G., 2010. Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cement and concrete research, 40(2), 334-339.
1Mansourghanaei, M., Biklaryan, M., & Mardookhpour, A., 2022. Experimental study of the effects of adding silica nanoparticles on the durability of geopolymer concrete. Australian Journal of Civil Engineering, 1-13.
2Mansourghanaei, M., Biklaryan, M., & Mardookhpour, A., 2022. Experimental study of properties of green concrete based on geopolymer materials under high temperature. Civil Engineering Infrastructures Journal, (), -. doi: 10.22059/ceij.2022.345402.1856
3Mansourghanaei, M., Biklaryan, M., & Mardookhpour, A., 2024. Durability and Mechanical Properties of Granulated Blast Furnace Slag Based Geopolymer Concrete Containing Polyolefin Fibers and Nano Silica. KSCE Journal of Civil Engineering, 28(1), 209-219.
4Mansourghanaei, M., Biklaryan, M., & Mardookhpour, A., 2023. Experimental study of properties of green concrete based on geopolymer materials under high temperature. Civil Engineering Infrastructures Journal, 56(2), 365-379.
5Mansourghanaei, M., 2023. Investigating the Mechanical and Durability Properties of Geopolymer Concrete Based on Granulated Blast Furnace Slag as Green Concrete. Journal of Civil Engineering Researchers, 5(3), 24-34.
6Mansourghanaei, M., 2023. Evaluation of Mechanical Properties and Microstructure of Pozzolanic Geopolymer Concrete Reinforced with Polymer Fiber. Journal of Civil Engineering Researchers, 5(2), 1-13.
7Mansourghanaei, M., & Mardookhpour, A., 2023. Numerical Investigation of the Effect of Concrete Injection on the Concrete Joints of the Arched Dam, Under the Applied Stresses. International Journal of Advanced Structural Engineering, 13(1), -. doi: 10.30495/ijase.2023.705234
8Mansourghanaei, M., Biklaryan, M., & Mardookhpour, A., 2023. Experimental Study of Mechanical Properties of Slag Geopolymer Concrete under High Temperature, Used in Road Pavement. International Journal of Transportation Engineering, 11(1), 1371-1385.
9Mansourghanaei, M., & Biklaryan, M., 2022. Experimental evaluation of compressive, tensile strength and impact test in blast furnace slag based geopolymer concrete, under high temperature. Journal of Civil Engineering Researchers, 4(2), 12-21.
10Mansourghanaei, M., & Biklaryan, M., 2022. Experimental study of compressive strength, permeability and impact testing in geopolymer concrete based on Blast furnace slag. Journal of Civil Engineering Researchers, 4(3), 31-39.
11Mansourghanaei, M., Biklaryan, M., & Mardookhpour, A., 2022. Experimental Study of Mechanical Properties of Geopolymer Concrete as Green Concrete with a Sustainable Development Approach in the Construction Industry, Under High Temperature. Journal of Civil Engineering Researchers, 4(4), 1-11.
12Mansourghanaei, M., biklaryan, M., & Mardookhpour, A., 2021. Evaluate Effect of Temperature On mechanical properties of Geopolymer Concretes blast furnace slag by using nanosilica and polyolefin fiber. Journal of Structural and Construction Engineering, 8(10), 334-352. doi: 10.22065/jsce.2021.277150.2382
13Mansourghanaei, M., Biklaryan, M., & Mardookhpour, A., 2022. Experimental Investigation of the Effect of Nanosilica on the Mechanical Properties and Durability of Slag Geopolymer Concrete. Journal of Concrete Structures and Materials, 7(1), 76-89. doi: 10.30478/jcsm.2022.333669.1260
Mane, S., & Jadhav, H. S., 2012. Investigation of geopolymer mortar and concrete under high temperature. Magnesium, 1(5).
McNulty, E., 2009. Geopolymers: an environmental alternative to carbon dioxide producing ordinary Portland cement. Department of Chemistry, The Catholic University of America.
Mehta, P. K., & Monteiro, P. J., 2014. Concrete: microstructure, properties, and materials. McGraw-Hill Education.
Nuaklong, P., Sata, V., & Chindaprasirt, P., 2016. Influence of recycled aggregate on fly ash geopolymer concrete properties. Journal of Cleaner Production, 112, 2300-2307.
Neupane, K., Chalmers, D., & Kidd, P., 2018. High-strength geopolymer concrete—properties, advantages and challenges. Advances in Materials, 7(2), 15-25.
Pilehvar, S., DuyCao, V., M.Szczotok, A., Carmona, M., Valentini, L., Lanzón, M., LenaKjøniksen, A., 2018. Physical and mechanical properties of fly ash and slag geopolymer concrete containing different types of micro-encapsulated phase change materials. Construction and Building Materials, 173, 28-39.
Provis, J. L., & Van Deventer, J. S., 2009. Introduction to geopolymers. In Geopolymers (pp. 1-11). Woodhead Publishing.
Siddique, R., & Kaur, D., 2012. Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures. Journal of Advanced Research, 3(1), 45-51.
Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K., 2015. Geopolymer concrete: A review of some recent developments. Construction and building materials, 85, 78-90.
Vora, P. R., & Dave, U. V., 2013. Parametric studies on compressive strength of geopolymer concrete. Procedia Engineering, 51, 210-219.
Yüksel, İ., Siddique, R., & Özkan, Ö., 2011. Influence of high temperature on the properties of concretes made with industrial by-products as fine aggregate replacement. Construction and building materials, 25(2), 967-972.
Yunsheng, Z., Wei, S., & Zongjin, L., 2010. Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Applied Clay Science, 47(3-4), 271-275.
Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., ... & Wang, H., 2016. Fly ash-based geopolymer: clean production, properties and applications. Journal of Cleaner Production, 125, 253-267.
Allahverdi, A.L.I., Kani, E.N. & Yazdanipour, M., 2011, Effects of blast-furnace slag on natural pozzolan-based geopolymer cement. Ceramics-Silikáty, 55(1), 68-78.