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1. Introduction 
 

The main sources of groundwater 

contamination can be from natural or human-

made sources. Natural resources can include sea 
water intrusion, decomposition of natural 

minerals in the earth's crust, and landslides (Eldho 

and Swathi, 2018). In recent decades, 
groundwater quality has been severely affected 

due to improper use and management of 

groundwater resources. The human-made sources 

are plenty ranging from domestic sources like 
leakages from septic tanks and sewers, improper 

disposal of industrial waste, widespread use of 

chemicals in agriculture such as fertilizers and 
pesticides and many other human activities 

(Freeze and Cherry, 1979). 

As mentioned, other sources of pollution include 
improper disposal of waste. When landfills are 

not well insulated, waste leachate that contains 

hazardous materials such as heavy metals can 

easily percolate into groundwater and 
contaminate it (Eldho and Swathi, 2018). 

Groundwater contamination and reducing 

groundwater quality have made groundwater 
remediation and better management an urgent 

need. Over the past few decades, groundwater 

pollution has become a major problem in many 

parts of the world. In many parts of the world, 
available groundwater is unsuitable for drinking 

and even agriculture. Besides, groundwater 

remediation methods, are very expensive. 
Therefore, in choosing the remediation method,  
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The goals of this research include investigating the efficiency of the finite 

element method and its combination with meta-heuristic algorithms to solve the 

optimization problem of the pump and treat (PAT) system. In this research, the 

hybrid optimization-simulation models were developed to determine the optimal 

groundwater remediation strategy using the pump and treat (PAT) system. 

The results indicated that when we consider minimizing the contaminant in 

groundwater at the end of the remediation period as the objective function, 

locating the pumping wells in the path of the contaminant flow and close to the 

contaminant source. In a single objective problem, the GA-FEM model with an 

average value of 0.0005036 in five runs of the model had the best performance 

among other models. The results of the two-objective problem indicated that 

MOMVO-FEM, despite a few solutions in optimal Pareto-front, could find a 

better location for pumping wells. Finally, it can be said that among factors such 

as the location of pumping wells and pumping rate, the most influential factor 

in choosing the right pumping and treatment policy is the proper location of 

pumping wells. Also, the location of contamination pumping wells does not 

necessarily correspond to the location of the contamination seepage. 
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an appropriate approach should be taken so that 

the contamination is effectively removed and 
the proper result is finally achieved. Therefore, 

optimization is very important in groundwater 

remediation (Eldho and Swathi, 2018). In the 
discussion of groundwater pollution, Darabi 

and Ghafouri, (2007) and Guneshwor et al. 

(2018) have identified sources of pollutants and 

some other researchers have studied various 
methods of groundwater remediation such as in 

situ phytoremediation Kumar et al. (2015) and 

Mategaonkar et al. (2018) or pump and 
treatment method (Wang et al., 2018). 

However, the design of an efficient remediation 

system is done for various purposes. 

Remediation methods generally have many 
influential components. For example, the pump 

and treatment method has important 

components such as the position of the pumping 
well, the rate of pumping, the remediation time 

and the rate of groundwater drawdown during 

pumping. Different methods are used to solve 

the optimizing problem of groundwater 
remediation. Some researchers have used 

nonlinear programming method (Gorelick et al., 

1984) or meta-heuristic algorithms such as 
AMALGAM (Ouyang et al., 2017), NSGA-II 

(Akbarpour et al., 2020), probabilistic multi 

objective genetic algorithm (PMOGA) (Singh 

et al., 2008), niched Pareto genetic algorithm 
(Erickson et al., 2002). One of the most 

important goals of groundwater remediation is 

to reduce the contaminant concentration to the 
permissible level. The carcinogenic human 

health risk can be directly or indirectly related 

to the contaminant concentration (Yang et al., 

2018). Many researchers have introduced the 
reduction of contaminant concentration and 

pumping cost, or in other words the number of 

pumping wells and pumping rate (Zeynali et al., 
2022) and some others the location of pumping 

wells (Sbai, 2019) and groundwater 

remediation time as the objective function of 

their optimization problem (Mategaonkar et al., 
2018). Besides, researchers have used various 

methods such as finite difference method (He et 

al., 2017) finite element method (Zeynali et al., 

2022) and meshfree method (Boddula and 
Eldho, 2017) (Seyedpour et al., 2019) and 

MODFOLW software (Joswig et al., 2017) 

(Singh et al., 2011) to solve the optimization 
problem of groundwater remediation. Younes et 

al. (2022) present a robust upwind MFE scheme 

is proposed to avoid such unphysical 

oscillations. The new scheme is a combination 

of the upwind edge/face centred Finite Volume 
(FV) method with the hybrid formulation of the 

MFE method (Jafarzadeh et al., 2021). The 

scheme ensures continuity of both advective 
and dispersive fluxes between adjacent 

elements and allows to maintain the time 

derivative continuous, which permits 

employment of high order time integration 
methods via the Method of Lines (Younes et al., 

2022). After reviewing the literature on the 

subject and the research background presented, 
in general, it can be said that by considering 

different objectives simultaneously to solve the 

optimization problem of the PAT system, a 

general and appropriate design for this 
remediation system can be presented. 

Therefore, the objectives of this research 

include investigating the efficiency of the finite 
element method in solving the equations related 

to contaminant transport and its integration with 

meta-heuristic algorithms to solve the pump and 

treat optimization problem. Also in this 
research, for the optimal design of the PAT 

system or, in other words, determining the 

optimal location of injection pumping wells, 
objectives such as minimizing human health 

risk, reducing head drawdown and reducing the 

pumping rate of polluted water are considered 

as single, double and triple objectives. To 
investigate the single-objective optimization 

problem, hybrid GA-FEM, PSO-FEM and 

MVO-FEM models are used. To solve the 
multi-objective optimization problem, NSGA-

II-FEM, MOPSO-FEM and MOMVO-FEM 

models are also used. 

 

2. Material and Methods 
 

2.1. Case Study 
 

In this study, a hypothetical aquifer is 

considered. This hypothetical aquifer is almost 
similar to the confined aquifer considered by 

Sharief (Sharief et al., 2008). In the hypothetical 

aquifer, the length of the aquifer is 1800 meters 
and its width is 1000 meters (Fig. 1). The 

hydrogeological parameters taken for the 

aquifer are as given in Table 1). The entire 

aquifer has storativity of 0.0004 and a pond is 
located in zone A, the seepage rate of which is 

0.009 m/day. Zone A and Zone C are assumed 

to be recharged at a rate of 0.00024 and 0.00012 
m/d, respectively, as seen from Fig. 1. 
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Fig. 1. Hypothetical confined aquifer configuration 

 
Table 1. Hydrogeological data used for the coupled flow and transport model 

Zone C Zone B Zone A Properties 

250 400 500 Transmissivity Tx (m2/d) 

200 250 300 Transmissivity Ty (m2/d) 

0.15 0.25 0.20 Porosity 

50 75 150 Longitudinal dispersivity (m) 

5.0 7.5 12.5 Transverse dispersivity (m) 

 

Initially, the entire aquifer is assumed to be 

unpolluted. The flow model has constant head 

conditions in the western and eastern borders 
with 100 and 95 meters, respectively, and no 

flow boundaries in northern and southern 

directions. For the contaminant transport model, 
only the eastern boundary is kept open and all 

other boundaries are considered impervious. 

This problem is done using the Galerkin finite 

element method and the Crank-Nicholson time 

scheme with a regular distribution of nodes in 

the form of 6×10 and 90 square elements (Fig. 
2). The time step of 5 days is selected for both 

groundwater flow and contaminant transport 

models, and the contaminant seepage from the 
contaminant source is assumed to be 

continuous, and the contaminant concentration 

distribution is simulated using the FEM model. 
 

 
Fig. 2. FEM Mesh for Hypothetical Aquifer 

 

2.2. Optimization problem 
 

In this optimization problem, it is assumed that 

the contaminant source is a landfill. Heavy 
metals have been seepage from this landfill for 

30 years. Contaminant seepage into the aquifer 

and contaminate the groundwater. Contaminant 

concentration and its permissible limit are given 

in Table 2. 

 

 Table 2. Contaminant seepage to aquifer in optimization problem 

Unit Permissible limit Value Contaminant 

μg/lit 200 240 Zinc 

μg/lit 200 240 Copper 

μg/lit 200 230 Nickel 

μg/lit 100 120 Chrome 

μg/lit 10 12 Cadmium 

In this problem, four pumping wells are used to 

apply the pumping and treatment policy. In the 

first step, the remediation period is considered 

to be 10 years. To monitor and compare the 
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results of the models, six nodes 15, 16, 21, 22, 

27 and 28, which are shown as squares in Fig. 
2, are considered. 
 

2.3. Objective functions 
 

The cost of remediation depends on the 
permissible limit of contaminants; high costs 

must always be incurred to achieve a low level 

of pollution. In case of non-payment, the 

desired level of pollution concentration cannot 
be reached. On the other hand, contaminants in 

groundwater can endanger human health. 

Therefore, in this research, the objective 
function is to determine the optimal location of 

pumping wells so that is minimized the 

carcinogenic health risk. In the single-objective 

problem, four wells are used with a pumping 
rate of 600 m3/day. The two-objectives 

problem, in addition to the first objective 

function, Minimizing the drawdown of the 

aquifer head is also considered with the same 
four pumping wells with a pumping rate of 600 

m3/day. In the three-objectives minimization 

problem, the average pumping rate from four 
pumping wells is also added to the set of 

objective functions. Hence, the optimization 

functions are defined as follows: 

(1) 

  
(2) 

  
 (3) 

 
Where F1, F2 and F3 are the first, second and 

third objective functions, respectively. In the 

first objective function, the carcinogenic health 

risk of contamination in the kth monitoring well 
and K is the number of monitoring wells. In the 

second objective function, 
old

iH  and 
new

iH  are 
aquifer head before and after installing pumping 

wells  at ith node and NNODE are the total 

number of nodes in the hypothetical aquifer 
domain. In the third objective function, is the 

mean of pumping rate from all pumping wells 

(m3/day). J represents the number of pumping 

wells and 
Ex

jq
 is the pumping rate for the jth 

pumping well (m3/day). In addition, the 

limitations of the PAT optimization model are 

as follows (Yang et al., 2018) (Eq. 1-8): 
(4) 

 
max 1,2,...,

Ex
jq

kc c k K   
(5) 

max0 1,2,...,Ex Ex

jq q j J  
 

(6) 

max 1,2,...,kELCK ELCK k K   
(7) 

k kELCK SF CDI   
(8) 

/1000 / ( )k kCDI CW IR EF ED AT BW    

In which, max

Exq  is the maximum pumping rate 
from the jth pumping well (m3/hr). ck 
contaminant concentration in the kth monitoring 

well ( /g lit ). Also, cmax is the maximum 

contaminant concentration ( /g lit ). ELCKmax 

is the maximum level of carcinogenic 

contamination at human health risk. SF is the 
slope factor that depends on the carcinogenic 

contamination in human health risk  

(
 

1
/ .mg kg day



). CDIk is contaminant drawn up 

around position k ( / /mg kg day ), CWk is 
contaminant concentration around position k  

( /g lit ), IR is Ingestion rate ( / /mg kg day ), 

EF is frequency of exposure ( ), 

ED is duration of exposure (year), AT average 

time (day) and BW is body weight (kg) (Eq. 13). 
 
2.4. The governing equation for groundwater flow 

and transport 
 

2.4.1. The governing equation for groundwater flow 

The governing partial differential equations 

describing the steady-state flow in a two-

dimensional inhomogeneous, anisotropic confined 
and unconfined aquifers are given as (Wang and 

Anderson, 1995) (Eq. 9 & 10). 
(9) 

 
 (10) 

 
Moreover, the governing partial differential 

equations describing the Transient flow in a 
two-dimensional inhomogeneous, anisotropic 

confined and unconfined aquifers are given as 

(Wang and Anderson, 1995) (Eq. 11 & 12). 
 (11) 

1

1

/
K

k

k

Min F ELCK K


 
  
 


 2

1

NNODE
old new

i i

i

Min F H H


 

1

3

J
Ex

j

j

q

Min F
J






/ /mg kg day

x y z

H H H
T T T R

x x y y z z

         
      

         

x y z

H H H
k H k H k H R

x x y y z z

         
      

         
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  x y w i i

h h h
T T S Q x x y y q

x x y y t


      
       

         
(12) 

  x y y w i i

h h h
K h K h S Q x x y y q

x x y y t


      
       

         
Where h(x,y,t) or H(x,y,t) is the piezometric 

head [L], Ti(x,y) is anisotropic transmissivity 
[L2T-1]; Ki(x,y) is anisotropic hydraulic 

conductivity [LT-1]; S(x,y) is storage 

coefficient, Sy(x,y) is specific yield; Qw is 
source or sink function; (-Qw = source and Qw = 

sink) [LT-1];   is Dirac delta function; xi and 

yi are the pumping or recharge well location; 

q(x,y,t) is vertical inflow rate [LT-1]; x and y are 
horizontal space variables [L] and t is the time 

[T]. 
 
2.4.2. FEM to solve governing equations for groundwater 

flow 

Using Galerkin’s finite element method and 

two-dimensional element for approximation Eq. 

13, the first step is to define a trial solution. 
(13) 

1

ˆ( , , ) ( ) ( , )
NP

L L

L

h x y t h t N x y



 

Where hL is the unknown head, NL is the 
known basis function at node L, and NP is the 

total number of nodes in the hypothetical 

aquifer domain. A set of simultaneous equations 
is obtained when residuals weighted by each of 

the basis function are forced to be zero and 

integrated over the entire domain  . Thus, Eq. 

13 can be written as: 
 (14) 

( , ) 0x y w L

h h h
T T Q q S N x y dxdy

x x y y t


       
       

        


 
(15) 

 

     

ˆ ˆ ˆe ee e e
e e eL L

x y L

e e

e e

w L L

e e

N Nh h h
T T dxdy S N dxdy

x x y y t

Q N dxdy q N dxdy

         
                    

 

  

  

Where

 

i

je

L

m

n

N

N
N

N

N

 
 
 

  
 
   .  

For each component, equation (15) can be 

written in matrix form: 

 (16) 

   
e

e e e eI
I

h
G h P f

t

 
            
Where I = i, j, m, n are four nodes of rectangular 

elements and G, P, f are the element matrices 

known as conductance, storage matrices, and 
recharge vectors, respectively. Summation of 

elemental matrix Eq. 16 for all the elements 

gives the global matrix as: 
(17) 

      I
I

h
G h P f

t

 
  

   
Applying the implicit finite difference scheme 

for 

Ih

t



  , term in time domain for Eq. 17 gives. 
(18) 

     { }t t t
I t t

h h
G h P f

t





 
  

   
The subscripts t and t + Δt represent the 

groundwater head values at earlier and present 

time steps. By rearranging the terms of Eq.18, 

the general form of the equation can be given 
as: 

 (19) 
                1 1

t t t t t t
P t G h P t G h t f f   

 
                

Where Δt = time step size, {h}t and {h}t+Δt are 
groundwater head vectors at the time t and t + 

Δt, respectively, x is Relaxation factor which 

depends on the type of finite difference scheme 

used. For fully explicit scheme 0  ; Crank–

Nicolson scheme 0.5  ; fully implicit 

scheme 1  . 

 
2.4.3. The equation governing transport 

The differential equation governing transport is 
written as follows: 

(20) 

x y z

x y z

C C C C
R D D D

t x x y y z z

C C C
v v v R C

x y z


          
      

          

  
   

    
Equation (20) is a three-dimensional equation 

that governs the transport and dispersion of 

contaminant in groundwater sources, which 

also has a delay factor 
1 b dk

R
n


 

. 

where C(x,y,t) is the solute concentration [ML-

3], Dx and Dy are the components of the 

diffusion coefficient with the dimensional 
equation [L2T-1]. l reaction rate constant [T-1], w 

elemental feeding rate [LT-1] with soluble 

concentration 'c , b thickness of the aquifer 

under the element [L], 
1 b dK

R



 

delay factor 
with ambient mass concentration and Kd 

absorption coefficient [L3M-1] and qw Specific 

pumping rate from a source [LT-1]. 
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2.4.4. Finite element method to solve the governing 

equation of transport 

In the finite element method, by using an 

imaginary computational grid, the solution 
domain is connected to a number of sub-

domains or elements at nodal points. Then the 

contaminant concentration (CL) is calculated at 
nodal points. For each given point, the 

concentration value can be approximately 

calculated as follows: 
(21) 

1

( , , , ) ( ). ( , , )
NNODE

L L

L

C x y z t C t N x y z


 
 

Where ( , , )LN x y z  is an arbitrary 
approximation function, called the node shape 

function L. 

Using the finite element method in equation 
(21) leads to a set of simultaneous algebraic 

equations as follows. 
(22) 

     [ ] [ ]
t t t

A C B C f


 
 

Where: 
(23) 

1
[ ] [ ] [ ] [ ] [ ]A G U F P

t
   

  
 (24) 

1
[ ] [ ]B P

t

  

t  the time interval is called the time step. 

 
t

C
 The known concentration vector is at the 

beginning of the time step and  
t t

C


 the 
unknown concentration vector is at the end of 

the time step. [G], [U], [F] and [P] are square 

matrices whose number of rows and columns 

are equal to the number of nodes in the 
computing network. The elements of these 

matrices are calculated as follows. 

(25) 

( , )

e e ee e e
e i i iL L L
L i x y y

e

N N NN N N
G D D D dxdydz

x x y y y y

     
   

      


 
(26) 

( , ) .e e e

L i i L

e

P R N N dxdydz 
 

(27) 

( , )

e e e
e e e e e e ei i i
L i x L y L z L

e

N N N
U V N V N V N dxdydz

x y z

   
    

   


  
  
 (28) 

( , ) . .e e e

L i i L

e

F R N N dxdydz 
 

{f} is the input or output concentration flux 

vector from the boundary, which is calculated 
as follows. 

(29) 

 
ˆ ˆ ˆ

x x y y z z L

c c c
f D n D n D n N d

x y z


   
    

   


 
Where ĉ  it represents the given concentration 
value at the border node, ni is the unit vector and 

  the boundary domain. 
 
2.5. Meta-heuristic algorithms 
 

2.5.1. GA and NSGA-II algorithm 

In the genetic algorithm and its multi-objective 
version, there are phases such as crossover 

phase and mutation phase. In the single-

objective version, how to select the best 

members of the population is based on the value 
of the objective function. The members of the 

population are sorted based on the value of the 

objective function and any member of the 
population who has calculated the value of the 

objective function less (in a minimization 

problem) is ranked first (Akbarpour et al., 

2020). But in the NSGA-II algorithm, the way 
to choose the ranking of the population 

members is based on their placement in each 

front. In such a way that the members of the 

population who are on the first front are better 
than the members who are on the second front. 

Also, the members placed in the same front are 

ranked by crowding distance to other members 
of the population. 
 

2.5.2. PSO and MOPSO algorithm 

In the particle swarm algorithm, each particle 

moves with a velocity vector and goes from one 

point in the space of feasible solutions to 
another point. The velocity vector in this 

algorithm is influenced by three factors. 1- The 

best position that the particle has found so far. 
2- The best position that the entire group has 

found so far (position of the best particle) and 

3- a random vector. After calculating the 

velocity vector, this value is added with the 
position of the particle to calculate the new 

position of the particle (Zeynali and Shahidi, 

2018). But in the multi-objective version of this 

algorithm, instead of the particles following the 
best particle, the space of feasible solutions is 

divided into smaller ranges and a leader is 

defined for each range, which is better than all 
the particles in that range. Therefore, the second 

part is the velocity vector of particles affected 

by these particles that are designated as leaders. 
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2.5.3. MVO and MOMVO algorithm 

The multi-verse optimizer algorithm is inspired 

by three main concepts of multi-verse theory. 
These three concepts are white holes, black 

holes and wormholes. In the cyclical model of 

the multi-verse theory, it is argued that at the 
point of collision between parallel universes, 

big bangs or white holes are created. Black 

holes, which are often observed, behave 

completely opposite to white holes. They attract 
everything with their immense gravitational 

force. Wormholes are holes that connect 

different parts of a universe. Wormholes in 
multi-verse theory act as space or time travel 

tunnels where objects are able to travel 

instantaneously to any corner of the world (or 

even from one world to another) (Mirjalili et al., 
2016). In order to develop the multi-objective 

version of MVO, a repository (archive) has been 

added to this algorithm. This repository stores 
the best non-overwhelming solutions obtained 

so far. The search mechanism in MOMVO is 

very similar to MVO, where solutions are 

improved using white holes, black holes, and 
wormholes (Mirjalili et al., 2017). Finally, the 

FEM model and optimization algorithms were 

assembled in MATLAB software. 

 

3. Results and discussion 
 

3.1. The results of the single objective optimization 

problem 

 

In solving the present optimization problem, 

only the concentration of zinc, chromium, and 
cadmium is considered, since the concentration 

of copper and nickel contaminant is lower than 

the concentration of zinc, and their permissible 
limits for agriculture are also the same. When 

the zinc concentration reaches the permissible 

limit at the end of the remediation period, it can 

be assured that the copper and nickel 
concentrations have also fallen below the 

permissible limit. Considering the above 

conditions, the optimization problem is 
transformed into determining the location of the 

four extraction wells in which part of the aquifer 

domain to achieve the optimal (near-optimal) 

values for the first objective function. It should 
be noted that the first step in the pump-and-treat 

process is to remove the source of contaminant 

or prevent seepage, and then the pumping wells 
will pump contaminant from the aquifer for 10 

years. Each of the algorithms was run five times 

with a population size of 10 and 20 iterations. 

The results of the five runs of each algorithm, 
including the best, worst, and average values of 

the objective function, are shown in Table 3. As 

can be seen in this table, the genetic algorithm 
with an average value of 0.0005036 has shown 

higher performance than the other two 

algorithms. Also, the performance of the 

algorithms at their best objective function value 
is shown in Fig. 3. 

 

Table 3. Statistical characteristics of objective function in five times run for all algorithms  

Average value The worth value The best Value Algorithm 

0.0005036 0.0005039 0.0004982 GA 

0.0005155 0.0005239 0.0005040 PSO 

0.0005091 0.0005172 0.0005038 MVO 

 

 
Fig. 3. The convergance trend of Meta-Heuristic algorithms 
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Also, the location of the pumping wells and the 

concentration of Zinc contaminant in the 

aquifer domain after 10 years of remediation are 

shown in Fig. 4. 
 

 
Fig. 4. Zinc contaminant concentration in aquifer domain (μg/lit) and the location of pumping wells 

 

3.2. The results of the two-objective optimization 

problem 
 

In this research, for the NSGA-II algorithm, 

similar to the single-objective version, 70% of 

the population members can act as parents, and 
the mutation rate is considered 90%. For the 

MOPSO algorithm, similar to the single-

objective version, the inertia weight is 0.9, and 
the values of C1 and C2 are also equal to 0.51. 

Also, for the MOMVO algorithm, similar to the 

single-objective version, the parameter p is 

equal to six, and the values of WEPmax and 
WEPmin are also equal to three and zero, 

respectively. WEP is the probability of a 

wormhole. Considering the values considered, 
each of the algorithms was run five times, and 

the number of solutions that are on the Pareto 

front is shown in Table (4). As can be seen in 

this table, in the NSGA-II algorithm, the 

number of solutions on the Pareto front is more 
than the other two algorithms, and in the 

MOMVO algorithm, the number of solutions on 

the Pareto front is no more than three solutions. 

As an example, the distribution of solutions on 
the Pareto front of the NSGA-II and MOPSO 

algorithms in the iteration with the most 

solutions on the Pareto front and the last 
iteration of the MOMVO algorithm is shown in 

Fig. 5. As can be seen in Fig. 5, the MOMVO 

algorithm, despite the small number of solutions 

on the Pareto front, has provided better 
solutions. Therefore, it cannot be said that the 

number of solutions on the front is always a 

good criterion for determining the performance 

of an algorithm. 
 

Table 4. The number of optimal pareto solutions (two objective problem) 

Number 

Algorithm 

1 2 3 4 5 

NSGA-II 7 8 4 5 9 
MOPSO 4 4 3 8 6 

MOMVO 3 3 3 3 3 

 

 
Fig. 5. Solutions in the optimal pareto-front for all three algorithm 
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3.3. The results of the three-objective optimization 
problem 

 

The present optimization problem with three 

objective functions was also investigated for a 
10-year remediation period. In this problem, the 

location of the four pumping wells should be 

selected in such a way that the optimal values 

(as close to optimal as possible) for the 
carcinogenic human health risk, head 

drawdown, and pumping rate are achieved in 

the three-objective optimization problem. In the 
present optimization problem, each of the 

algorithms was run five times, and the number 

of solutions on its Pareto front is shown in Table 

5. According to the values considered for each 
algorithm, the results of examining their 

performance showed that in all runs of the 

algorithms, the number of solutions on the 
Pareto front is more than two-thirds of the 

population size. Table 5 also shows that in the 

NSGA-II algorithm, in some cases, all members 
of the population are on the Pareto front. The 

reason for the increase in the number of 

solutions on the Pareto front compared to the 

two-objective problem can be attributed to the 
introduction of the third objective function. This 

is because in this problem, the pumping rate 

from each well can take on an infinite number 
of different values. Therefore, more solutions 

can be on the Pareto front. As an example, the 

distribution of solutions on the Pareto front for 

the last run of the NSGA-II algorithm is shown 
in Fig. 6. 

 

Table 5. Number of optimal solution (three objective problem) 

Number 

 

Algorithm 

1 2 3 4 5 

NSGA-II 10 7 8 6 10 

MOPSO 8 3 8 7 8 
MOMVO 8 8 7 8 8 
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Fig. 6. Solutions in the optimal pareto-front for all NSGA-II algorithm 

 

For the selected solution, shown as a square in 

Fig. 6, the pumping rate from the four pumping 

wells is given in Table 6 and the location of each 
well along with the groundwater level is shown 

in Fig. 7. As observed in this Fig., two pumping 

wells with a higher pumping rate are located in 

the path of the pollutant, but the other two wells, 

against of the results of the single-objective 

problem, are located at nodes closer to the left 
boundary (boundary with constant head) to 

reduce both the concentration and the 

groundwater head drawdown. The carcinogenic 
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human health risk and the concentration of each 

pollutant are also shown in Fig. 8 and Fig. 9, 
respectively. As can be seen in Fig. 8 and Fig. 

9, the contaminant concentration and the 

carcinogenic human health rick are within the 
defined permissible limits. 

 

Table 6. The value of pumping rate from four pumping well in NSGA-II algorithm 

4 3 2 1 Well number 

561.95 527.44 543.24 547.60 Pumping rate (m3/day) 

 

 
Fig. 7. Groundwater head (meter) and four pumping well location 
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Fig. 8. Amount of human health risk on each monitoring well 
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Fig. 9. Amount of heavy metals concentration on each monitoring well 

 

4. Conclusion 
 

In this research, hybrid optimization-

simulation models GA-FEM, PSO-FEM, and 

MVO-FEM were used for the single-objective 

problem and NSGA-II-FEM, MOPSO-FEM, 
and MOMVO-FEM for solving multi-objective 

groundwater remediation optimization 

problems using the pump-and-treat method. 

The optimization problem was investigated 
with the mentioned models in both single-

objective and multi-objective forms. In solving 

the single-objective optimization problem, the 

objective was to determine the optimal location 
of four pumping wells with a fixed pumping rate 

of 600 m3/day so that the carcinogenic human 
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health risk is reduced to the permissible level. 

The results of this section indicated that the GA-
FEM model has higher efficiency than the other 

two models. In the two-objective problem, the 

groundwater level drawdown was also included 
as an influential parameter. The optimization 

problem was investigated with four pumping 

wells with a fixed pumping rate of 600 m3/day. 

The results indicated that the number of 
solutions on the Pareto front is not a lot. The 

reason for this is the fixed pumping rate and the 

lack of a large number of selectable nodes. 
However, among the solutions provided by each 

model, a better solution is one that can reduce 

the level of pollution in the aquifer to the 

permissible level and, on the other hand, also 
minimize the groundwater level drawdown. 

Therefore, in general, it can be said that among 

the options that each algorithm provides, the 
option (solution) should be chosen that balances 

the two objective functions. This means that 

both the contaminant concentration and the 

head drawdown should be reduced 
simultaneously. When examining the three-

objective optimization problem, due to the 

possibility of choosing any value for the 
pumping rate from each well, the number of 

solutions on the Pareto front was significantly 

more than in the two-objective problem. And 

sometimes it was observed that even all 
members of the population in the NSGA-II-

FEM model were on the Pareto front. Finally, 

the results of this research indicated that the 
mentioned models are capable of solving the 

groundwater remediation optimization problem 

using the pump-and-treat method, and these 

models can also be used for real case studies. 
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