Machine Learning Models for Estimating Actual Transpiration with Limited Data

Document Type : Original Research Article

Authors

1 Hydroclimatic Research Group, Lab for Spatial Informatics, International Institute of Information Technology Hyderabad (IIITH), India

2 National Institute of Water and Atmospheric Research, Christchurch, New Zealand

Abstract

The present study compared various empirical and data-driven algorithms to predict Actual Evapotranspiration (AET) using various hydro climatic variables. The AET over semi-arid climatic conditions of Hyderabad, Telangana, India, and Waipara (New Zealand) was estimated using different empirical methods-based PET using Budyko and Turc models. Modelled PET from five data-driven algorithms, such as Long short-term memory neural networks (LSTM), Artificial Neural Network (ANN), Gradient Boosting Regressor, Random Forest, and Support Vector Regression were trained to predict AET using meteorological variables. The results show simple empirical-based AET models, Budyko and Turc, can estimate AET very well. The results indicated that 99% accuracy could be achieved with all climatic input, whereas accuracy drops to 86% with limited data. Both LSTM and ANN models based on PET have been noted as the most robust models for estimating AET with minimal climate data. It was observed that the meteorological variables of temperature and solar radiation have more significant contributions than other variables in the estimation of AET. In addition, the effects of the meteorological variables were found to be essential and effective in the estimation of AET. The research findings of the study reveal that under limited data availability, the best input combinations were identified as temperature and wind speed for estimating PET; temperature, wind speed, and precipitation for estimating AET for semi-arid climatology.

Keywords

Main Subjects


Alexandris, S. & Kerkides, P., 2003. New empirical formula for hourly estimations of reference evapotranspiration. Agric. Water Manag, 60, 157-180. https://doi.org/10.1016/S0378-3774(02)00172-5.
Allan, R., Pereira, L. & Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56.
Amatya, D.M., Skaggs, R.W. & Gregory, J.D., 1995. Comparison of Methods for Estimating REF-ET. J. Irrig. Drain. Eng. 121, 427-435. https://doi.org/10.1061/(ASCE)0733- 9437(1995)121:6(427).
Asokan, S.M. & Jarsjö, J., 2010. Vapor flux by evapotranspiration: Effects of changes in climate, land use, and water use. J. Geophys. Res. Atmospheres 115. https://doi.org/10.1029/2010JD014417.
Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A. & Holtslag, A.A.M., 1998. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol, 212–213, 198–212. https://doi.org/10.1016/S0022-1694(98)00253-4.
Biggs, T.W., Mishra, P.K. & Turral, H., 2008. Evapotranspiration and regional probabilities of soil moisture stress in rainfed crops, southern India. Agric. For. Meteorol. 148, 1585–1597. https://doi.org/10.1016/j.agrformet.2008.05.012.
Blaney, H.F., 1892, 1952. Determining water requirements in irrigated areas from climatological and irrigation data.
Bray, R.H. & Kurtz, L.T., 1945. Determination of Total, Organic, And Available Forms of Phosphorus in Soils. Soil Sci. 59, 39-46. Budyko, M.I., 1961. The Heat Balance of the Earth’s Surface. Sov. Geogr. 2, 3-13. https://doi.org/10.1080/00385417.1961.10770761
Silva, C.D.O.F., & Manzione, R.L., 2021. Modelagem Espacial Da Evapotranspiracao Em Agroecossistema Do Sistema Aquifero Bauru | Águas Subterrâneas [WWW Document]. URL https://aguassubterraneas.abas.org/asubterraneas/artic le/view/29356 (accessed 4.23.22).
Chow, V.T., 2010. Applied Hydrology. Tata McGraw-Hill Education. Deo, R.C. & Samui, P., 2016. Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models. Stoch. Environ. Res. Risk Assess. 30, 1769-1784. https://doi.org/10.1007/s00477-015-1153-y
Dingman, S.L., 2015. Physical Hydrology: Third Edition. Waveland Press. Fu, B.P., 1981. Fu, B.P. (1981) On the Calculation of the Evaporation from Land Surface. Scientia Atmospherica Sinica, 5, 23-31. - References - Scientific Research Publishing [WWW Document]. URL https://www.scirp.org/%28S%28vtj3fa45qm1ean45v vffcz55%29%29/reference/referencespapers.aspx?ref erenceid=1185500 (accessed 4.23.22).
Geigy, R., Jenni, L., Kauffmann, M., Onyango, R.J. & Weiss, N., 1975. Identification of T. brucei-subgroup strains isolated from game. Acta Trop. 32, 190-205.
Gudulas, K., Voudouris, K., Soulios, G. & Dimopoulos, G., 2013. Comparison of different methods to estimate actual evapotranspiration and hydrologic balance. Desalination Water Treat. 51, 2945-2954. https://doi.org/10.1080/19443994.2012.748443
Hargreaves, G. & Samani, Z., 1985. Reference Crop Evapotranspiration From Temperature. Appl. Eng. Agric. 1. https://doi.org/10.13031/2013.26773
Jensen, M.E., Allen, R.G., Walter, I.A., Elliott, R., Mecham, B., Itenfisu, D., Howell, T.A., Snyder, R., Brown, P., Echings, S., Spofford, T., Hattendorf, M., Cuenca, R.H., Wright, J.L. & Martin, D., 1990. Issues, Requirements and Challenges in Selecting and Specifying a Standardized Et Equation.
Jensen, M.E., Walter, I.A., Allen, R.G., Elliott, R., Itenfisu, D., Mecham, B., Howell, T.A., Snyder, R., Brown, P., Echings, S., Spofford, T., Hattendorf, M., Cuenca, R.H., Wright, J.L. & Martin, D., 2012. ASCE’s Standardized Reference Evapotranspiration Equation 1-11. https://doi.org/10.1061/40499(2000)126.
Landeras, G., Ortiz-Barredo, A. & López, J.J., 2008. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric. Water Manag. 95, 553-565. https://doi.org/10.1016/j.agwat.2007.12.011
Leith, C.E., 1975. Climate Response and Fluctuation Dissipation. J. Atmospheric Sci. 32, 2022-2026. https://doi.org/10.1175/1520- 0469(1975)032<2022:CRAFD>2.0.CO;2 Ma, X., Zhao, Q., Yao, Y. & Yao, W., 2021. A novel method of retrieving potential ET in China. J. Hydrol. 598, 126271. https://doi.org/10.1016/j.jhydrol.2021.126271
Magliulo, V., d’Andria, R. & Rana, G., 2003. Use of the modified atmometer to estimate reference evapotranspiration in Mediterranean environments. Agric. Water Manag. 63, 1-14. https://doi.org/10.1016/S0378-3774(03)00098-2
McVicar, T.R., Roderick, M.L., Donohue, R.J. & Van Niel, T.G., 2012. Less bluster ahead? Ecohydrological implications of global trends of terrestrial near-surface wind speeds. Ecohydrology 5, 381-388. https://doi.org/10.1002/eco.1298
Pereira, A.R. & Pruitt, W.O., 2004. Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration. Agric. Water Manag. 66, 251-257. https://doi.org/10.1016/j.agwat.2003.11.003
Priestley, C.H.B. & Taylor, R.J., 1972. On the Assessment of Surface Heat Flux and Evaporation Using Large- Scale Parameters. Mon. Weather Rev. 100, 81-92. https://doi.org/10.1175/1520- 0493(1972)100<0081:OTAOSH>2.3.CO;2
Rim, C.S., 2008. Estimating evapotranspiration from small watersheds using a water and energy balance approach. Hydrol. Process. 22, 703-714. https://doi.org/10.1002/hyp.6769 Naoum, S. and Tsanis, I., 2003. Hydroinformatics in evapotranspiration estimation - ScienceDirect [WWW Document]. URL https://www.sciencedirect.com/science/article/pii/S13 64815202000762 (accessed 4.23.22).
Su, T., Xie, D., Feng, T., Huang, B., Qian, Z., Feng, G. & Wu, Y., 2022. Quantifying the contribution of terrestrial water storage to actual evapotranspiration trends by the extended Budyko model in Northwest China. Atmospheric Res. 273, 106147. https://doi.org/10.1016/j.atmosres.2022.106147
Su, Z., 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 6, 85-100. https://doi.org/10.5194/hess-6- 85-2002
Turc, L., 1961. Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Ann. Agron, 12(1), 13-49.
Turc, L., 1954. The water balance of soils. Relation between precipitation, evaporation and flow.
Utset, A., Farré, I., Martıńez-Cob, A. & Cavero, J., 2004. Comparing Penman–Monteith and Priestley–Taylor approaches as reference-evapotranspiration inputs for modeling maize water-use under Mediterranean conditions. Agric. Water Manag. 66, 205-219. https://doi.org/10.1016/j.agwat.2003.12.003
Walter, I.A., Allen, R.G., Elliott, R., Jensen, M.E., Itenfisu, D., Mecham, B., Howell, T.A., Snyder, R., Brown, P., Echings, S., Spofford, T., Hattendorf, M., Cuenca, R.H., Wright, J.L. & Martin, D., 2012. ASCE’s Standardized Reference Evapotranspiration Equation 1-11. https://doi.org/10.1061/40499(2000)126,
Wang, Z., Wu, J., Liu, C. & Gu, G., 2017. Integrated Assessment Models of Climate Change Economics. Springer, Singapore. https://doi.org/10.1007/978-981- 10-3945-4
Zhang, L., Potter, N., Hickel, K., Zhang, Y. & Shao, Q., 2008. Water balance modeling over variable time scales based on the Budyko framework – Model development and testing. J. Hydrol. 360, 117-131. https://doi.org/10.1016/j.jhydrol.2008.07.021
Zheng, Z., Gao, J., Ma, Z., Wang, Z., Yang, X., Luo, X., Jacquet, T. & Fu, G., 2016. Urban flooding in China: main causes and policy recommendations. Hydrol. Process. 30, 1149-1152. https://doi.org/10.1002/hyp.10717.