Abdollahzadeh, M., Heidari, S. & Einifar, A. 2021. The investigation of thermal adaptation in apartments in hot and dry climate: a study on thermal comfort and thermal behavior in Shiraz. Naqshejahan 11, 33-48, https://dorl.net/dor/20.1001.1.23224991.1400.11.3.2.9.
Alghoul, S. K., Rijabo, H. G. & Mashena, M. E. 2017. Energy consumption in buildings: A correlation for the influence of window to wall ratio and window orientation in Tripoli, Libya. J. Build. Eng. 11, 82–86, https://doi.org/10.1016/j.jobe.2017.04.003.
ASHRAE Standard 55, Thermal environmental conditions for human occupancy (ANSI approved), American society of heating, refrigerating, and air-conditioning engineers, 2004.
ASHRAE, ASHRAE handbook of fundamentals, chapter 8 thermal comfort, American society of heating, refrigerating, and air-conditioning engineers, Atlanta, 2005.
ASHRAE, ASHRAE handbook of fundamentals, chapter 8 thermal comfort, American society of heating, refrigerating, and air-conditioning engineers, Atlanta, 2017.
Attia, S. & Carlucci, S. 2015. Impact of different thermal comfort models on zero energy residential buildings in hot climate. Energy Build. 102, 117-128, https://doi.org/10.1016/j.enbuild.2015.05.017.
Brager, G. S. & De Dear R. J. 1998. Thermal adaptation in the built environment: a literature review. Energy build. 27(1), 83-96, https://doi.org/10.1016/S0378-7788(97)00053-4.
California Energy Code, Building energy efficiency standards for residential and nonresidential buildings, California Energy Commission, CEC-400-2008-001-CMF, 2008.
de Dear, R. & Brager, G. S. 2001. The adaptive model of thermal comfort and energy conservation in the built environment. Int. J. Biometeorol. 45, 100–108, https://doi.org/10.1007/s004840100093
de Dear, R. & Brager, G. S. 2002. Thermal comfort in naturally ventilated buildings: revisions to ASHRAE standard 55. Energy Build. 34, 549-561, https://doi.org/10.1016/S0378-7788(02)00005-1.
De Masi, R. F., Festa, V., Gigante, A., Ruggiero, S. & Vanoli, G. P. 2023. The role of windows on building performance under current and future weather conditions of European climates. Energy Build. 292, 113177, https://doi.org/10.1016/j.enbuild.2023.113177.
Eskandari, H., Saedvandi, M. & Mahdavinejad, M. 2018. The impact of Iwan as a traditional shading device on the building energy consumption. Build. 8, https://doi.org/10.3390/buildings8010003.
Freidooni, F., Ataei, H. & Shahryar, F. 2015. Estimating the Occurrence Probability of Heat Wave Periods Using the Markov Chain Model. J. sustain. Develop. 8, 26-45, doi:10.5539/jsd.v8n2p26.
Freidooni, F., Sohankar, A., Rastan, M. R. & Shirani, E. 2021. Flow field around two tandem non-identical-height square buildings via LES. Build. Environ. 201, 107985, https://doi.org/10.1016/j.buildenv.2021.107985.
Freidooni. F, Freidooni, S. & Gandomkar, A. 2022. Climatic compatible future cities locating approach to less non-renewable energy consumption. J. Urban Manage. Energy Sustain. 4(2): 1-13, DOI: 10.22034/ijumes.2022.
Goia, F. 2016. Search for the optimal window-to-wall ratio in office buildings in different European climates and the implications on total energy saving potential. Sol. Energy 132, 467–492, https://doi.org/10.1016/j.solener.2016.03.031.
Hashemi Rafsanjani, L. & Heidari, S. 2018. Evaluating adaptive thermal comfort in residential buildings in hot-arid climates Case study: Kerman province in hot and dry climate. J. Archit. 6, 43-65, 10.29252/ahdc.2018.1422.
López-Pérez, L. A. & Flores-Prieto, J. J. 2023. Adaptive thermal comfort approach to save energy in tropical climate educational building by artificial intelligence. Energy 263, 125706, https://doi.org/10.1016/j.energy.2022.125706.
Luo, M., Wang, Z., Brager, G., Cao, B. & Zhu, Y. 2018. Indoor climate experience, migration, and thermal comfort expectation in buildings. Build. Environ. 141, 262-272, https://doi.org/10.1016/j.buildenv.2018.05.047.
Maier, T., Krzaczek, M. & Tejchman, J. 2009. Comparison of physical performances of the ventilation systems in low-energy residential houses. Energy Build. 41(3), 337-353, https://doi.org/10.1016/j.enbuild.2008.10.007.
Martilli, A. 2014. An idealized study of city structure, urban climate, energy consumption, and air quality. Urban Clim. 10, 430-446, doi:10.1016/j.uclim.2014.03.003.
Misiopecki, C., Bouquin, M., Gustavsen, A. & Jelle, B. P. 2018. Thermal modeling and investigation of the most energy-efficient window position. Energy Build. 158, 1079-1086, https://doi.org/10.1016/j.enbuild.2017.10.021.
Mokhtari, L., Kariminia, S. & Kianersi, M. 2022. Typology of general form and relative compactness of residential buildings in Tehran from the perspective of climatic performance and optimization of energy consumption. Naqshejahan 11, 60-78, https://dorl.net/dor/20.1001.1.23224991.1400.11.4.5.4.
Murathan, E. K. & Manioğlu, G. 2024. A simulation-based evaluation of using PCMs in buildings for energy efficiency under different climate conditions. J. Energy Storage 75, 109738, https://doi.org/10.1016/j.est.2023.109738.
Nasrollahi, N., Hatami, M., Khastar, S. R. & Taleghani, M. 2017. Numerical evaluation of thermal comfort in traditional courtyards to develop new microclimate design in a hot and dry climate. Sustain. cities soc. 35, 449-467, https://doi.org/10.1016/j.scs.2017.08.017.
Nguyen, A. T., Singh, M. K. & Reiter, S. 2012. An adaptive thermal comfort model for hot humid South-East Asia, Build. Environ. 56, 291-300, https://doi.org/10.1016/j.buildenv.2012.03.021.
Nicol, F. 1993. Thermal comfort—a handbook for field studies towards an adaptive model, University of East London, UK.
Nicol, F., Humphreys, M. & Roaf, S. 2017. Adaptive thermal comfort principles and practice, Routledge, New York.
Nicol, J. F. & Humphreys, M.A. 2002. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build. 34, 563-572, https://doi.org/10.1016/S0378-7788(02)00006-3.
Raimundo, A. M. & Oliveira, A. V. M. 2022. Analyzing thermal comfort and related costs in buildings under Portuguese temperate climate. Build. Environ. 219, 109238, https://doi.org/10.1016/j.buildenv.2022.109238.
Shaeri, J., Habibi, A., Yaghoubi, M. & Chokhachian, A. 2019. The optimum window-to-wall ratio in once buildings for hot-humid, hot-dry, and cold climates in Iran. Environ. 6 https://doi.org/10.3390/environments6040045.
Shaeri, J., Yaghoubi, M. & Habibi, A. 2018. Influence of Iwans on the Thermal Comfort of Talar Rooms in the Traditional Houses: A Study in Shiraz, Iran. Build. 8, http://dx.doi.org/10.3390/buildings8060081.
Singh, M. K., Kumar, S., Ooka, R., Rijal, H. B., Gupta, G. & Kumar, A. 2018. Status of thermal comfort in naturally ventilated classrooms during the summer season in the composite climate of India. Build. Environ. 128, 287-304, https://doi.org/10.1016/j.buildenv.2017.11.031.
Takasu, M., Ooka, R., Rijal, H. B., Indraganti, M. M. & Singh, K. 2017. Study on adaptive thermal comfort in Japanese offices under various operation modes. Build. Environ. 11, 273-288, https://doi.org/10.1016/j.buildenv.2017.02.023.
Wang, H., Lin, C., Hu, Y., Zhang, X., Han, J. & Cheng, Y. 2023. Study on indoor adaptive thermal comfort evaluation method for buildings integrated with semi-transparent photovoltaic window, Build. Environ. 228, 109834, https://doi.org/10.1016/j.buildenv.2022.109834.
Yan, H., Sun, Z., Shi, F., Yuan, G., Dong, M. & Wang, M. 2022. Thermal response and thermal comfort evaluation of the split air conditioned residential buildings. Build. Environ. 221, 109326, https://doi.org/10.1016/j.buildenv.2022.109326.
Yang, H., Liu, L., Li, X., Liu, C. & Jones, P. 2017. Tailored domestic retrofit decision making towards integrated performance targets in Tianjin, China. Energy Build. 140, 480–500, https://doi.org/10.1016/j.enbuild.2016.12.040.
Zheng, P., Wu, H., Liu, Y., Ding, Y. & Yang, L. 2022. Thermal comfort in temporary buildings: A review. Build. Environ. 221, 109262, ttps://doi.org/10.1016/j.buildenv.2022.109262.
Ziaee, N. & Vakilinezhad, R. 2022. Multi-objective optimization of daylight performance and thermal comfort in classrooms with light-shelves: Case studies in Tehran and Sari, Iran. Energy Build. 254, 111590, https://doi.org/10.1016/j.enbuild.2021.111590.
Ziarani, N. N. & Haghighi, A. P. 2019. Anticipating an efficient relative humidity in a room under direct solar radiation and equipped by radiant cooling panel system. Int. J. Refrigeration 98, 98-108, https://doi.org/10.1016/j.ijrefrig.2018.10.018.