Ali, A. A., Karl, D. S. & Asghar, S., 2020. Applications of Artificial Neural Network for Seismic Facies Classification: A Case Study from the Mid-Cretaceous Reservoir in Supergiant Oil Field.
Ali, A. A., Karl, D. S. & Asghar, S., 2020. Lithofacies Classification and Distribution for Heterogeneous Channelized System Based on Neural Network Process: Case Study from Middle East Carbonate Reservoir.
Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C. & Bahdanau, D., 2016. Theano: A Python framework for fast computation of mathematical expressions. arXiv preprint arXiv:1605.02688.
Anderton, R., 1985. Clastic facies models and facies analysis. Geological Society, London, Special Publication 18, 31–47.
Avseth, P., Mukerji, T., Jorstad, A., Mavko, G. & Veggeland, T., 2001. Seismic reservoir mapping from 3-D AVO in a North Sea turbidite system. Geophysics 66 (4), 1157–1176.
Baldwin, J.L., Otte, D.N. & Wheatley, C.L., 1989. Computer Emulation of Human Mental Processes: Application of Neural Network Simulators to Problems in Well Log Interpretation,” Society of Petroleum Engineers, SPE paper 19619, 481-493.
Baniak, G.M., La Croix, A.D., Polo, C.A., Playter, T. L., Pemberton, S.G. & Gingras, M.K., 2014. Associating X-ray microtomography with permeability contrasts in bioturbated media. Ichnos, 21(4), 234-250.
Baraniya. S., J., Mrithula, J., Angeline, M., Poonam, N., B., P., Sharon., F. & Kala, A., 2023. Breast Cancer Classification and Recurrence Prediction Using Artificial Neural Networks and Machine Learning Techniques. Second International Conference on Electrical, Electronics, Information and Communication Technologies, 1-4.
Berteig, V., Helgeland, J. & Mohn, E., 1985. Lithofacies prediction from well data. In: Proceedings of SPWLA Twenty-sixth Annual Logging Symposium.
Вісник Х., 2023. Features of the use of artificial neural networks in digital marketing.
Bouma, A., 1962. Sedimentology of Some Flysch Deposits. Elsevier, Amsterdam, 168p.
Bohling, G.C. & Dubois, M.K., 2003. An integrated application of neural network and Markov chain techniques to prediction of lithofacies from well logs. Kansas geological survey open-file report. 50, 6.
Bhatt, A. & Helle, H.B., 2002. Determination of facies from well logs using modular neural networks. Petroleum Geoscience, 8(3), 217-228.
Borer, J.M. & Harris, P.M., 1991. Lithofacies and cyclicity of the yate’s formation; Permian basin: implications for reservoir heterogeneity. AAPG (Am. Assoc. Pet. Geol.) Bull. 75 (4), 726–779.
Burton, D. & Wood, L.J., 2013. Geologically-based permeability anisotropy estimates for tidally-influenced reservoirs using quantitative shale data. Petrol. Geoscience. 19, 3–20. Carle, S.F., 1999. T-PROGS: Transition Probability Geostatistical Software. Version 2.1 User's Guide. University of California, Davis, CA.
Carle, S., 1999. T-PROGS: Transition Probability Geostatistical Software. Version 2.1 User's Guide. University of California, Davis, CA.
Carlton, E., Brett, P. I., McLaughlin., K. Histon., E. & Schindler., A. F., 2012. Time-specific aspects of facies: State of the art, examples, and possible causes. Paleogeography, Palaeoclimatology, Paleoecology.
Chang, H.C., Kopaska-Merkel, D.C. & Chen, H.C., 2002. Identification of lithofacies using Kohonen self-organizing maps. Computer Geoscience, 28, 223–229.
Chang, H.C., Kopaska-Merkel, D.C., Chen, H.C. & Durrans, S.R., 2000. Lithofacies identification using multiple adaptive resonance theory neural networks and group decision expert system. Computer Geoscience, 26, 591–601.
Chen, X., 2014. Fluvial facies in the changzhougou formation in the jixian area of china and geological significance. Journal of stratigraphy,
Chen, Y., Liu, Q. & Li, C., 2023. Integration of machine learning and facies classification for reservoir characterization: A case study from the Permian Basin. Journal of Petroleum Science and Engineering, 209, 109350.
Chicheng, Xu., Jeffery, H., Andy, B., & Jonathan, R., R. 2017. Introduction to special section: Facies classification and interpretation — Integrating multiscale and multidiscipline data. Interpretation.
Coleman, J.M. & Wright, L.D., 1975. Modern river deltas: variability of processes and sand bodies. In: M.L. Broussard (Editor), Deltas. Models for Exploration. Houston Geol. Sot., pp 99-149.odies. In: M.L. Broussard (Editor), Deltas. Models for Exploration. Houston Geol. Sot., 99-149.
Cracknell, M.J, & Reading, A.M., 2014. Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Computer Geoscience, 63, 22–33.
Cuddy, S., 2000. Litho-facies and permeability prediction from electrical logs using fuzzy logic. SPE Reservoir Eval. Eng. 3(4), 319–324.
Dalrymple, R.W., 2010. Interpreting sedimentary successions. In: James, N.P., Dalrymple, R.W. (Eds.), Facies Models 4: St. Johns, Newfoundland. Geological Association of Canada, 3–18.
Dias., P & Dalton, L. 2022. Embedding Ethics and Trustworthiness for Sustainable AI in Earth Sciences: Where Do We Begin?
Derek, H., Johns, R. & Pasternack, E., 1990. Comparative study of a back propagation neural network and statistical pattern recognition techniques in identifying sandstone lithofacies. In: Proceedings 1990 Conference on Artificial Intelligence in Petroleum Exploration and Production. Texas A and M University, College Station, TX, 41–49.
Deng, C.X., Pan, H.P., Fang, S.N., Konate, A.A. & Qin, R.D., 2017. Support vector machine as an alternative method for lithology classification of crystalline rocks. Journal of Geophysics and Engineering, 14(2), 341
Deng, T., Xu, C., Jobe, D. & Xu, R., 2019. A comparative study of three supervised machine-learning algorithms for classifying carbonate vuggy facies in the Kansas Arbuckle Formation. Petrophysics, 60(6), 838–853.
Dill, H., Ludwig, R.R., Kathewera, A. & Mwenelupembe, J., 2005. A lithofacies terrain model for the Blantyre Region: implications for the interpretation of palaeosavanna depositional systems and for environmental geology and economic geology in southern Malawi. Journal of African Earth Sciences, 41(5), 341–393
Dim, C., 2021. Analysis and Interpretation of Outcropping Facies.
Doyen, P., 2007. Seismic reservoir characterization: EAGE
Dott, R.H. & Bourgeois, J., 1982. Hummocky stratification: Significance of its variable bedding sequences. Geol. Soc. Am. Bull., 93, 663-680,
Dubois, M. K., Bohling, G. C. & Chakrabarti, S., 2007. Comparison of four approaches to a rock facies classification problem. Computers Geosciences, 33(5), 599-617.
Dunham, R., 1962. Classification of carbonate rocks according to depositional texture. In: Ham, W.E. (Ed.), Classification of Carbonate Rocks. American Association of Petroleum Geologists Memoir 1. American Association of Petroleum Geologists, Tulsa, Oklahoma, 108–121.
Ekaterina, T. & Anton, E., 2022. Automatic Neural Network-Based Seismic Facies Classification Using Pseudo-Labels.
El-Sebakhy, E.A., Asparouhov, O., Abdulraheem, A., Wu, D., Latinski, K. & Spries, W., 2010. Data mining in identifying carbonate lithofacies from well logs based from extreme learning and support vector machines. In: Proceeding of AAPG GEO 2010 Middle East Geoscience Conference & Exhibition, 1–17
Fajčíková, K., Stehlíková, B., Cvečková, V. & Rapant, S., 2017. Application of artificial neural network in medical geochemistry. Environ Geochem Health. 39, 1513–1529.
Fakhari, S., Javaherian, A. & Ghanbarian, M., 2020. Lithofacies identification in a heterogeneous reservoir using different machine learning algorithms: A comparison study. Journal of Petroleum Science and Engineering, 187, 106934.
Folk, R., 1954. The distinction between grain size and mineral composition in sedimentary rock nomenclature. Journal of Geology 62, 344–359.
Fung, C.C, Wong, K.W., Eren, H. & Charlebois, R., 1995. Lithology Classification Using Self Organizing Map:’ Proc. of the /€E€ international Conference on Neural Networks, Vol 1, pp. 526-532, Perth, Nov/Dec 1995
Gal, Y. & Ghahramani, Z., 2016. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In international conference on machine learning (pp. 1050-1059).
Galloway, W.E., 1975. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In: M.L. Broussard (Editor), Deltas. Models for Exploration. Houston Geological Society, 87-98.
Gerard, J., 1999. Breaking of a Paradigm: Geology Can Provide 3D Complex Probability Fields for Stochastic Facies Modelling.
Gingerich, P.D., 1969. Markov analysis of cyclic alluvial sediments. Journal of Sedimentary Petrology. 39(1), 330–332.
Goncalves, C.A., Harvey, P.K. & Lovell, M.A., 1995. Application of a Multilayer Neural Network and Statistical Techniques in Formation Characterization, SPWLA 36th Annual Logging Symposium.
Haojie, S., Li-Hui, C., Jixin, H., Sixin, W. & Yanshui, Y., 2023. A Deep Learning Method for Facies Recognition from Core Images and Its Application: A Case Study of Mackay River Oil Sands Reservoir. Energies.
Halotel, J., Demyanov, V. & Gardiner, A., 2020. Value of geologically derived features in machine learning facies classification. Mathematical Geosciences, 52(1), 5-29.
Hanpeng, C., Yi, Z., Mingjun, Su. & Cheng, Y., 2023. Supervised Seismic Facies Analysis via ACGAN.
Harpreet, K., Nam, P., Sergey, F, Zhicheng G, Luke, D, Ben, G, Michael, J, Ray, A, & Shuang, G., 2023. A deep learning framework for seismic facies classification. Interpretation, 11(1), T107–T116.
He, J.H., Ding, W.L., Jiang, Z.X., Li, A., Wang, R.Y., & Sun, Y.X., 2016. Logging identification and characteristic analysis of the lacustrine organic-rich shale lithofacies: a case study from the Es3l shale in the Jiyang Depression, Bohai Bay Basin, Eastern China. Journal of Petroleum Science and Engineering. 145, 238–255.
Huang, S., Zhu, J., Zhou, Q. & Wang, Y., 2021. Application of artificial neural networks in lithofacies prediction of tight sandstones. Journal of Petroleum Science and Engineering, 204, 108714.
Ismail, E., 2022. Intelligent systems and AI techniques: Recent advances and Future directions. International Journal of Advances in Applied Computational Intelligence, 1(2), 30-45.
Jiachun. Y., Jinquan, Z., Xingguo, H., Gulang, Z., Anqing C., Mingcai H. &
Junxing C., 2023. "Explainable Convolutional Neural Networks Driven Knowledge Mining for Seismic Facies Classification," in IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-18, 2023, Art no. 5911118.
James, N.P., & Dalrymple, R.W. (Eds.) 1986. Facies Models 4: St. Johns, Newfoundland. Geological Association of Canada, pp. 3–18. Davis, J.C., 1986. Statistics and Data Analysis in Geology, second ed. Wiley, New York, pp. 646.
Kariri, E., Louati, H., Louati, A. & Masmoudi, F., 2023. Exploring the Advancements and Future Research Directions of Artificial Neural Networks: A Text Mining Approach.Appl.Sci.2023,13,3186.
Kaur, H., Pham, N., Fomel, S., Geng, Z., Decker, L., Gremillion, B. & Gao, S., 2023. A deep learning framework for seismic facies classification. Interpretation, 11(1), T107-T116.
Khalifa, M., 2005. Lithofacies, diagenesis and cyclicity of the ‘‘Lower member’’ of the Khuff formation (late permian), Al Qasim province, Saudi arabia. Journal of Asian Earth Sciences, 25(5), 719–734.
La Croix, A.D., Gingras, M.K., Pemberton, S.G., Mendoza, C.A., MacEachern, J.A. & Lemiski, R.T., 2013. Biogenically enhanced reservoir properties in the Medicine Hat gas field, Alberta, Canada. Journal of Marine and Petroleum Geology, 43, 464–477.
La Croix, A.D., MacEachern, J.A., Ayranci, K., Hsieh, A. & Dashtgard, S.E., 2017. An iconological-assemblage approach to reservoir heterogeneity assessment in bioturbated strata: insights from the Cretaceous Viking Formation, Alberta, Canada. Journal of Marine and Petroleum Geology, 86, 636–654.
Le Roux, J.P., 1994. Spreadsheet procedure for modified first-order embedded Markov analysis of cyclicity in sediments. Computer. Geoscienc, 20(1), 17–22.
Li, Y. & Anderson-Sprecher, R., 2006. Facies identification from well logs: a comparison of discriminant analysis and naive Bayes classifier. Journal of Petroleum Science and Engineering, 53 (3–4), 149–157.
Li, X., Zhang, H. & Zhang, W., 2022. Advanced facies classification techniques for reservoir characterization and dynamic simulation. Fuel, 306, 121474.
Lindberg, D.V. & Grana, D., 2015. Petro-elastic log-facies classification using the expectation–maximization algorithm and hidden Markov models. Mathematical Geosciences, 47(6), 719–752.
Lipton, Z., 2016. The mythos of model interpretability. arXiv preprint arXiv:1606.03490.
Ma, Y.Z., 2011. Lithofacies clustering using principal component analysis and neural network: applications to wireline logs. Mathematical Geosciences, 43(4), 401–419.
Martin, O. & Hartwig, E., 2020. Metamorphic Facies and Facies Series. Springer Textbooks in Earth Sciences, Geography and Environment.
Miall, A., 1973. Markov chain analysis applied to an ancient alluvial palin succession. Sedimentology, 20, 347–364
Miao, T. & Sumit V., 2022. Recurrent neural network: application in facies classification, Advances in Subsurface Data Analytics, Elsevier, 2022, Pages 65-94,
Micheli-Tzanakou, E., 2000. Supervised and Unsupervised Pattern Recognition: Feature Extraction and Computational Intelligence. CRC Press, Boca Raton, pp. 371.
Middleton, G.V., 1978. Facies. In: Fairbridge, R.W., Bourgeois, J. (Eds.), Encyclopedia of Sedimentology: Stroudsbury, Pennsylvania. Dowden, Huchison and Ross, pp. 323–325.
Mingliang, L., Michael, J., Weichang, Li. & Philippe, N., 2020. Seismic facies classification using supervised convolutional neural networks and semi-supervised generative adversarial networks. Geophysics.
Mohammad, H., Mohammad, A.R., Majid, B. & Mehran, R., 2023. Classification of rock facies using deep convolutional neural network. Research Square.
Mohammed, H., Mortad., B., Christ., G., Cox, T.., Gilles, F., Zhaolin., O. & Edvard, G., 2023. Seismic Facies Recognition of Ultra-Deep Carbonate Rocks Based on Convolutional Neural Network.
Mushfiqur, R. & Asadujjaman, M., 2021. Implementation of Artificial Neural Network on Regression Analysis.
Nan, Y., Elita, Yunyue, Li. & Arthur, C., 2023. Automatic facies classification from acoustic image logs using deep neural networks. Interpretation.
Pan, S. & Yang, Q. 2010. A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10), 1345-1359.
Polikar, R. 2012. Ensemble learning. In Ensemble machine learning (pp. 1-34). Springer, Boston, MA.
Powers, D.W. & Easterling, R.G., 1982. Improved methodology for using embedded Markov chains to describe cyclical sediments. Journal of Sedimentary Research, 52(3), 913-923.
Qi, L. & Carr, T.R., 2006. Neural network prediction of carbonate lithofacies from well logs, Big Bow and Sand Arroyo Creek fields, Southwest Kansas. Computers & Geosciences, 32(7), 947-964.
Qing, H., & Nimegeers, A.R., 2008. Lithofacies and depositional history of Midale carbonate-evaporite cycles in a Mississippian ramp setting, Steelman-Bienfait area, southeastern Saskatchewan, Canada. Bulletin of Canadian Petroleum Geology, 56(3), 209-234.
Reading, H., 1986a. Sedimentary Environments and Facies. Blackwell Scientific Publications. ISBN 0-632-03627-3.
Reading, H., 1986b Facies. In H. G. Reading (Ed.), Sedimentary environments and facies (2nd Ed) (pp. 4–19). Oxford: Blackwell Scientific Publishing
Rogers, S.J.., Fang, J.H., Karr, C.L. & Stanley, D.A., 1992. “Determination of Lithology from Well Logs Using a Neural Network,” The AAPG Bulletin, vol. 76 no. 5, pp 731-739, 1992.
Rumelhart, D.E., Hinton, G.E. & Williams, R.J., 1986. “Learning Internal Representation by Error Propagated,” Parallel Distributed Processing, vol. 1, MIT Press, Cambridge MA, pp. 318-362, 1986.
Xiaoyu, H., 2021. ANN Model Using Gradient Descent to Train Weight Vectors.
Saggaf, M, & Nebrija, E., 2003. A fuzzy logic approach for the estimation of facies from wire-line logs. AAPG Bull. 87 (7), 1223–1240.
Santos, D., Roisenberg, M. & Nascimento, M., 2022. Deep Recurrent Neural Networks Approach to Sedimentary Facies Classification Using Well Logs, in IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1-5, 2022, Art no. 3001405.
Sakurai, S., & Melvin, J., 1988. Facies discrimination and permeability estimation from well logs for the Endicott field. In: 29th Annual APWLA Symposium. San Antonio, Texas.
Selley, R., 1985. Ancient sedimentary environments and their subsurface diagenesis (3rd Ed.). Ithaca: Cornell University Press.
Selley, R., 2000. Applied sedimentology. San Diego: Academic Press
Shang, H., Cheng, L., Huang, J., Wang, L. & Yin, Y., 2023. A Deep Learning Method for Facies Recognition from Core Images and Its Application: A Case Study of Mackay River Oil Sands Reservoir. Energies, 16(1), 465.
Sharon, & Femi, P., 2023. Breast Cancer Classification and Recurrence Prediction Using Artificial Neural Networks and Machine Learning Techniques.
Smith, A., Brown, R. & Jones, M., 2024. Geological integration in facies classification for reservoir characterization: Insights from the North Sea. AAPG Bulletin, 108(2), 166-184.
Siripitayananon, P., Chen, H., & Hart, B., 2001. A new technique for lithofacies prediction: back-propagation neural network. In: Proceedings of the 39th Annual ACM-SE Conference.
Soleimani, M. H., Riahi, M. A., Bagheri, M., & Rahimi, M., 2023. Classification of rock facies using deep convolutional neural network. Research Square.
Sun, Y., Zhan, H., Gao, B., Liu, K., & Zhang, G., 2021. Integration of petrophysical and seismic data for facies classification using generative adversarial networks. Journal of Petroleum Science and Engineering, 201, 108099.
Tahmasebi, P., Sahimi, M. S. & Javaherian, A., 2018. A comparison between different machine learning algorithms for lithofacies identification: A case study from the Kangan and Dalan gas fields, Iran. Journal of Petroleum Science and Engineering, 170, 23-38.
Tang, H., Meddaugh, W.S. & Toomey, N., 2011. Using an artificial-neural-network method to predict carbonate well log facies successfully. SPE Reservoir Evaluation & Engineering, 14 (01), 35–44.
Tang, H., White, C., Zeng, X., Gani, M., & Bhattacharya, J., 2004. Comparison of multivariate statistical algorithms for wireline log facies classification. AAPG
Tian, M., & Verma, S. 2022. Recurrent neural network: application in facies classification. In Advances in Subsurface Data Analytics (pp. 65-94). Elsevier.
Deng, T., Xu, C., Lang, X. & Doveton, J., 2021. Diagenetic facies classification in the Arbuckle formation using deep neural networks. Mathematical Geosciences, 53(7), 1491-1512.
Wang, G., Zhang, S. & Zhao, L., 2023. Probabilistic facies modeling for uncertainty quantification in reservoir characterization. Journal of Natural Gas Science and Engineering, 103, 104213.
Walczak, S. 2022. Artificial Neural Network Research in Online Social Networks. In I. Management Association (Ed.), Research Anthology on Artificial Neural Network Applications (pp. 68-84). IGI Global.
Walker, R., 1984. General Introduction: Facies, facies sequences and facies models. In R. G. Walker (Ed.), Facies models (2nd Ed.). Geoscience Canada Reprint Series 1 (pp. 1–9). Toronto: Geological Association of Canada Publications
Walker, R., 2006. Facies models revisited. In H. W. Posamentier & R. G. Walker (Eds.), Facies models revisited. Special Publication No. 84 (pp. 1–17): Tulsa: SEPM (Society for Sedimentary Geology).
Wang, G. & Carr, T.R., 2012a. Methodology of organic rich shale lithofacies identification and prediction: a case study from Marcellus Shale in the Appalachian Basin. Computer Geosciences, 49, 151–163.
Wang, G. & Carr, T.R., 2012b. Marcellus Shale lithofacies prediction by multiclass neural network classification in the Appalachian Basin. Math Geosciences, 44, 975–1004.
Wang, G. & Timothy, R., 2012. Marcellus shale lithofacies prediction by multiclass neural network classification in the Appalachian Basin. Computer Geosciences, 44, 975–1004.
Wang, G., & Timothy, R., 2013. Organic-rich Marcellus Shale lithofacies modelling and distribution pattern analysis in the Appalachian Basin. AAPG Bull. 97, 2173–2205
Wang, G., Carr, T.R., Ju, Y. & Li, C., 2014. Identifying organic-rich Marcellus Shale lithofacies by support vector machine classifier in the Appalachian basin. Computer Geosciences, 64, 52–60.
Wang., F. & Alkhalifah. T. 2023. Learnable Gabor kernels in convolutional neural networks for seismic facies classification.
Weissmann, G., 2005. Application of transition probability geostatistics in a detailed stratigraphic framework. In: Workshop for GSA Annual Meeting, Three-dimensional Geologic Mapping for Groundwater Applications. University of New Mexico, USA, pp. 105–108.
Wells, N., 1989. A program in BASIC for facies-by-facies Markov chain analysis. Computer Geosciences, 15(1), 143–155.
Wong, P.M., Jian, F.X. & Taggart, I.J., 1995. A critical comparison of neural networks and discriminant analysis in lithofacies, porosity and permeability predictions. Journal of Petroleum Geology, 18(2), 191-206.
Wong, P.M., Taggart, I.J. & Gedeon, T.D., 1995. “The use of Fuzzy ARTMAP for Lithofacies Classifications: A Comparison Study,” SPWLA 36th Annual Logging Symposium, 1995b.
Xu, H. & MacCarthy, I.A.J., 1998. Markov chain analysis of vertical facies sequences using a computer software package (SAVFS): Courtmacsherry Formation (Tournaisian), Southern Ireland. Computers Geosciences, 24(2), 131-139.
Xu, X. S., Wan, F., Yin, F. & Chen, M., 2001. Environment facies, ecological facies and diagenetic facies of Baota Formation of Late Ordovina. Journal of Mineralogy and Petrology, 21(3), 64-68.
Imamverdiyev, Y. & Sukhostat, L., 2019. Lithological facies classification using deep convolutional neural network. Journal of Petroleum Science and Engineering, 174, 216-228.
Yousefzadeh, R. & Ahmadi, M., 2023. Improved history matching of channelized reservoirs using a novel deep learning-based parametrization method. Geoenergy Science and Engineering, 229, 212113.
Yuan, Y., Cao, P., Jiang, Z., Wang, Z. & Dong, Q., 2018. A comprehensive review of the application of artificial intelligence methods in the petroleum industry. Computers Geosciences, 111, 30-55.
Zhang, Y., Wang, X. & Zhang, Z., 2022. Integration of multi-scale data for facies classification and reservoir characterization: A case study from the Junggar Basin. Journal of Petroleum Science and Engineering, 212, 109775.
Zhongliang. M., 2009. Connotation of facies-potential coupling effect on reservoir in Jiyang Depression and its geological significance. Acta Petrological Sinica,