Investigating the Properties of Environmentally Friendly Green Concrete (Geopolymer) Under High Temperature

Document Type : Original Research Article


1 Department of Civil Engineering, Chalous Branch, Islamic Azad University, Chalous, Iran

2 Department of Civil Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran


In recent decades, scientists have made extensive efforts to find an alternative material in concrete in order to stop the emission of gas CO2 in the cement production process. Geopolymers are materials with aluminosilicate properties that play the role of cement in concrete in the presence of water. Past research has proven that geopolymer concretes (GPC) do not have CO2 pollution due to the absence of cement in their mixing design, so they are environmentally and nature friendly. In this laboratory research, a mixed design of ordinary portland cement concrete (OPCC) containing Portland cement with a grade of 500 kg/m3 and a mixed design of GPC based on granulated blast furnace slag (GBFS)was made. In order to check the mechanical properties and durability, tests of compressive strength and weight loss of concrete were carried out under the temperature of 21 and 600 °C at the age of 90 days. Applying high heat to concrete samples caused a decrease in the compressive strength test results in OPCC and GPC by 42.31 and 14.9 percent, respectively, and in the weight loss test by 0.0067, respectively. And 0.0064 percent weight loss was obtained in OPCC and GPC. In the compressive strength test under 21 and 600 °C, GPC showed 11.41 and 64.35% superiority over OPCC. The results obtained from the scanning electron microscope imaging analysis of concrete were in harmony and overlapping with the results of other tests in this research.


Main Subjects

Allahverdi, A. L. I., Kani, E. N., & Yazdanipour, M., 2011. Effects of blast-furnace slag on natural pozzolan-based geopolymer cement. Ceramics-Silikáty55(1), 68-78. ‏
Amiri, M., & Aryanpoor, M., 2019. The Effects of High Temperatures on Concrete Performance based on Nanostructural Changes in Calcium Silicate Hydrate (CSH). Concrete Research12(4), 69-80. ‏
Brindley, G. W., 1975. Thermal transformations of clays and layer silicates. In Proceedings of the international clay conference (pp. 119-129). Applied Publishers Wilmette, IL. ‏
Bakharev, T., 2006. Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cement and concrete Research36(6), 1134-1147. ‏
Bakhtiyari, S., Allahverdi, A., Rais-Ghasemi, M., Zarrabi, B. A., & Parhizkar, T., 2011. Self-compacting concrete containing different powders at elevated temperatures–Mechanical properties and changes in the phase composition of the paste. Thermochimica acta514(1-2), 74-81. ‏
Comrie, D. C., & Kriven, W. M., 2004. Composite cold ceramic geopolymer in a refractory application. In Advances in Ceramic Matrix Composites IX, Proceedings (pp. 211-225). ‏
Davidovits, J., 2008. Geopolymer chemistry and applications. Geopolymer Institute. ‏
Deb, P., Nath, P., & Sarker, P., 2015. Drying shrinkage of slag blended fly ash geopolymer concrete cured at room temperature. Procedia Engineering, 125, 594-600.
Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Aliabad, M., Marto, A., & Khorami, M., 2018. Portland cement structure and its major oxides and fineness. Smart structures and systems, 22(2), 425-432.
Huseien, G. F., Mirza, J., Ismail, M., Ghoshal, S. K., & Ariffin, M. A. M., 2018. Effect of metakaolin replaced granulated blast furnace slag on fresh and early strength properties of geopolymer mortar. Ain Shams Engineering Journal9(4), 1557-1566. ‏
Hongjian, D., Suhuan , D., & Liu, X., 2014. Durability performances of concrete with nano-silica. Construction and building materials, 73, 705-712.
Kong, D. L., & Sanjayan, J. G., 2010. Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cement and concrete research40(2), 334-339.‏
1Mansourghanaei, M., Biklaryan, M., & Mardookhpour, A., 2022. Experimental study of the effects of adding silica nanoparticles on the durability of geopolymer concrete. Australian Journal of Civil Engineering, 1-13.‏
2Mansourghanaei, M., Biklaryan, M., & Mardookhpour, A., 2022. Experimental study of properties of green concrete based on geopolymer materials under high temperature. Civil Engineering Infrastructures Journal, (), -. doi: 10.22059/ceij.2022.345402.1856
3Mansourghanaei, M., Biklaryan, M., & Mardookhpour, A., 2024. Durability and Mechanical Properties of Granulated Blast Furnace Slag Based Geopolymer Concrete Containing Polyolefin Fibers and Nano Silica. KSCE Journal of Civil Engineering, 28(1), 209-219.‏
4Mansourghanaei, M., Biklaryan, M., & Mardookhpour, A., 2023. Experimental study of properties of green concrete based on geopolymer materials under high temperature. Civil Engineering Infrastructures Journal, 56(2), 365-379.‏
5Mansourghanaei, M., 2023. Investigating the Mechanical and Durability Properties of Geopolymer Concrete Based on Granulated Blast Furnace Slag as Green Concrete. Journal of Civil Engineering Researchers, 5(3), 24-34.‏
6Mansourghanaei, M., 2023. Evaluation of Mechanical Properties and Microstructure of Pozzolanic Geopolymer Concrete Reinforced with Polymer Fiber. Journal of Civil Engineering Researchers, 5(2), 1-13.‏
7Mansourghanaei, M., & Mardookhpour, A., 2023. Numerical Investigation of the Effect of Concrete Injection on the Concrete Joints of the Arched Dam, Under the Applied Stresses. International Journal of Advanced Structural Engineering, 13(1), -. doi: 10.30495/ijase.2023.705234
8Mansourghanaei, M., Biklaryan, M., & Mardookhpour, A., 2023. Experimental Study of Mechanical Properties of Slag Geopolymer Concrete under High Temperature, Used in Road Pavement. International Journal of Transportation Engineering, 11(1), 1371-1385.‏
9Mansourghanaei, M., & Biklaryan, M., 2022. Experimental evaluation of compressive, tensile strength and impact test in blast furnace slag based geopolymer concrete, under high temperature. Journal of Civil Engineering Researchers4(2), 12-21.‏
10Mansourghanaei, M., & Biklaryan, M., 2022. Experimental study of compressive strength, permeability and impact testing in geopolymer concrete based on Blast furnace slag. Journal of Civil Engineering Researchers4(3), 31-39.‏
11Mansourghanaei, M., Biklaryan, M., & Mardookhpour, A., 2022. Experimental Study of Mechanical Properties of Geopolymer Concrete as Green Concrete with a Sustainable Development Approach in the Construction Industry, Under High Temperature. Journal of Civil Engineering Researchers4(4), 1-11.‏
12Mansourghanaei, M., biklaryan, M., & Mardookhpour, A., 2021. Evaluate Effect of Temperature On mechanical properties of Geopolymer Concretes blast furnace slag by using nanosilica and polyolefin fiber. Journal of Structural and Construction Engineering8(10), 334-352. doi: 10.22065/jsce.2021.277150.2382
13Mansourghanaei, M., Biklaryan, M., & Mardookhpour, A., 2022. Experimental Investigation of the Effect of Nanosilica on the Mechanical Properties and Durability of Slag Geopolymer Concrete. Journal of Concrete Structures and Materials7(1), 76-89. doi: 10.30478/jcsm.2022.333669.1260
Mane, S., & Jadhav, H. S., 2012. Investigation of geopolymer mortar and concrete under high temperature. Magnesium1(5). ‏
McNulty, E., 2009. Geopolymers: an environmental alternative to carbon dioxide producing ordinary Portland cement. Department of Chemistry, The Catholic University of America. ‏
Mehta, P. K., & Monteiro, P. J., 2014. Concrete: microstructure, properties, and materials. McGraw-Hill Education.
Nuaklong, P., Sata, V., & Chindaprasirt, P., 2016. Influence of recycled aggregate on fly ash geopolymer concrete properties. Journal of Cleaner Production112, 2300-2307.‏
Neupane, K., Chalmers, D., & Kidd, P., 2018. High-strength geopolymer concrete—properties, advantages and challenges. Advances in Materials7(2), 15-25. ‏
Pilehvar, S., DuyCao, V., M.Szczotok, A., Carmona, M., Valentini, L., Lanzón, M., LenaKjøniksen, A., 2018. Physical and mechanical properties of fly ash and slag geopolymer concrete containing different types of micro-encapsulated phase change materials. Construction and Building Materials, 173, 28-39.
Provis, J. L., & Van Deventer, J. S., 2009. Introduction to geopolymers. In Geopolymers (pp. 1-11). Woodhead Publishing. ‏
Siddique, R., & Kaur, D., 2012. Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures. Journal of Advanced Research3(1), 45-51.‏
Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K., 2015. Geopolymer concrete: A review of some recent developments. Construction and building materials85, 78-90.‏
Vora, P. R., & Dave, U. V., 2013. Parametric studies on compressive strength of geopolymer concrete. Procedia Engineering51, 210-219. ‏
Yüksel, İ., Siddique, R., & Özkan, Ö., 2011. Influence of high temperature on the properties of concretes made with industrial by-products as fine aggregate replacement. Construction and building materials25(2), 967-972.‏
Yunsheng, Z., Wei, S., & Zongjin, L., 2010. Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Applied Clay Science47(3-4), 271-275. ‏
Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., ... & Wang, H., 2016. Fly ash-based geopolymer: clean production, properties and applications. Journal of Cleaner Production125, 253-267.‏
Allahverdi, A.L.I., Kani, E.N. & Yazdanipour, M., 2011, Effects of blast-furnace slag on natural pozzolan-based geopolymer cement. Ceramics-Silikáty55(1), 68-78. ‏