Ahmed, K., Sachindra, D.A., Shahid, S., Demirel, M.C. & Chung, E.S., 2019. Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics. Hydrology and Earth System Sciences, 23(11), 4803-4824.
Ali, M., Prasad, R., Xiang, Y. & Yaseen, Z.M., 2020. Complete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecasts. Journal of Hydrology, 584, 124647.
Amirabadizadeh, M., Ramezani, Y., Nazeri Tahroudi, M. & Zeynali, M.J., 2019. Assessment of data-driven models in downscaling of the daily temperature in Birjand synoptic station. AUT Journal of Civil Engineering, 3(2), 193-200.
Askarizadeh, S.M., Mozaffari, G. & Mazidi, A., 2018. Estimating the Fluctuations of Rainfall Extreme Indices in Mashhad for the Next Two Periods of 2011-2030 and 2046-2065 Using LARS-WG Model's Downscaling. Journal of Geography and Regional Development, 16(1), 25-50.
Bageri, F., Khalili, K. & Nazeri Tahrudi, M., 2023. Evaluation of Entropy Theory Based on Random Forest in Quality Monitoring of Ground Water Network. Water and Irrigation Management, 13(1), 123-139.
Bagora, P. & Narulkar, S., 2024. Enhancing Monsoon Predictions for the Upper Chambal Catchment Through Temporal and Spatial Downscaling of Predicted Future Precipitation. Journal of The Institution of Engineers (India): Series A, 105(3), 703-717.
Bajirao, T.S., Kumar, P., Kumar, M., Elbeltagi, A. & Kuriqi, A., 2021. Potential of hybrid wavelet-coupled data-driven-based algorithms for daily runoff prediction in complex river basins. Theoretical and Applied Climatology, 145(3), 1207-1231.
Bandyopadhyay, A., Bhadra, A., Raghuwanshi, N.S. & Singh, R., 2009. Temporal trends in estimates of reference evapotranspiration over India. Journal of Hydrologic Engineering, 14(5), 508-515.
Breiman, L., 2001. Random Forests. Machine Learning 45(1): pp. 5–32.
Birge, L., 2004. Model selection for Gaussian regression with random design. Bernoulli, 10(6), 1039-1051.
Burn, D.H., Cunderlik, J.M. & Pietroniro, A., 2004. Hydrological trends and variability in the Liard River basin/Tendances hydrologiques et variabilité dans le basin de la rivière Liard. Hydrological Sciences Journal, 49(1), 53-67.
Burt, D., Rasmussen, C.E. & Van Der Wilk, M., 2019, May. Rates of convergence for sparse variational Gaussian process regression. In International Conference on Machine Learning (pp. 862-871). PMLR.
Chengcheng, X., Kaixuan, G., Jama, A.H., Chuiyu, L., Qingyan, S., Xu, L. & Lingjia, Y., 2024. Simulation and prediction of precipitation and temperature under RCP scenarios. Water Supply, 24(5), 1676-1688.
Chylek, P., Li, J., Dubey, M.K., Wang, M. & Lesins, G. J. A.C., 2011. Observed and model simulated 20th century Arctic temperature variability: Canadian earth system model CanESM2. Atmospheric Chemistry and Physics Discussions, 11(8), 22893-22907.
Dou, J., Yunus, A.P., Bui, D.T., Merghadi, A., Sahana, M., Zhu, Z., ... & Pham, B.T., 2019. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Science of the Total Environment, 662, 332-346.
Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.
Jain, S.K. Kumar, V. & Saharia, M., 2013. Analysis of rainfall and temperature trends in northeast India. International Journal of Climatology, 33, 968-978.
Javaherian, M., Ebrahimi, H. & Aminnejad, B., 2021. Prediction of changes in climatic parameters using CanESM2 model based on RCP scenarios (case study): Lar dam basin. Ain Shams Engineering Journal, 12(1), 445-454.
Kendall M.G., 1975. Rank Correlation Measures, Charles Griffin, London.
Khalili, K. & Nazeri Tahroudi, M., 2016. Performance evaluation of ARMA and CARMA models in modeling annual precipitation of Urmia synoptic station. Water and Soil Science, 26(2-1), 13-28.
Khalili, K., Tahoudi, M.N., Mirabbasi, R. & Ahmadi, F., 2016a. Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stochastic Environmental Research and Risk Assessment, 30(4), 1205-1221.
Khalili, K., Tahoudi, M.N., Mirabbasi, R. & Ahmadi, F., 2016b. Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stochastic Environmental Research and Risk Assessment, 30, 1205-1221.
Kim, Y. J. & Gu, C., 2004. Smoothing spline Gaussian regression: more scalable computation via efficient approximation. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(2), 337-356.
Kouhi, M, Mousavi Baygi, M., Farid hosseini, A.R., Sanaei Nejad, S.H. & Jabbari Nooghabi, H., 2012. Statistical Downscaling of Extremes of precipitation and construction of their future scenarios in the Kashfroud Basin. Journal of Climate Research, 1391(12), 35-53.
Kumar, S., Merwade, V., Kam, J. & Thurner, K., 2009. Streamflow trends in Indiana: effects of long term persistence, precipitation and subsurface drains. Journal of Hydrology, 374(1), 171-183.
Lee, S., Kim, J.C., Jung, H.S., Lee, M.J. & Lee, S., 2017. Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea. Geomatics, Natural Hazards and Risk, 8(2), 1185-1203.
Luo, Y., Liu, S., Fu, S., Liu, J., Wang, G. & Zhou, G., 2008. Trends of precipitation in Beijiang River basin, Guangdong province, China. Hydrological Processes, 22(13), 2377-2386.
Mann, H.B., 1945. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245-259.
Matalas, NC., 1967. Mathematical assessment of synthetic hydrology. Water Resources Research, 3(4): 937-945.
Merufinia, E., Sharafati, A., Abghari, H. & Hassanzadeh, Y. (2023). On the simulation of streamflow using hybrid tree-based machine learning models: A case study of Kurkursar basin, Iran. Arabian Journal of Geosciences, 16(1), 28.
Mianabadi, A., Bateni, M. M. & Mohammadi, S., 2023. Projection of Change in the Distribution of Precipitation and Temperature Using Bias-Corrected Simulations of CMIP6 Climate Models (Case Study: Kerman Synoptic Station). Climate Change Research, 4(14), 65-84.
Mlakar, M., Tusar, T. & Filipic, B., 2019. Comparing random forest and gaussian process modeling in the GP-demo algorithm. Information Security Education Journal (ISEJ), 6(1), 9.
Mohammadi, H., Azizi, G., Khoshahklagh, F. & Ranjbar, F., 2017. Analysis of daily precipitation extreme indices trend in Iran. Physical Geography Research, 49(1), 21-37.
Nash, J.E. & Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of hydrology, 10(3), 282-290.
Nazeri Tahroudi, M. & Mirabbasi, R., 2025. Evaluating the efficiency and accuracy of the copula-based rainfall-runoff model. Earth Science Informatics, 18(1), 122.
Nazeri Tahroudi, M., Ahmadi, F. & Mirabbasi, R., 2023. Performance comparison of IHACRES, random forest and copula-based models in rainfall-runoff simulation. Applied Water Science, 13(6), 134.
Nazeri Tahroudi, M., Amirabadyzadeh, M. & Zeynali, M. J., 2018. Evaluation of the accuracy of artificial intelligence and regression models in simulation the daily temperature. Journal of Meteorology and Atmospheric Science, 1(1), 65-76.
Sain, S.R., Baggerly, K.A. & Scott, D.W., 1994. Cross-validation of multivariate densities. Journal of the American Statistical Association, 89(427), 807-817.
Salas, J.D., Delleur, J.W., Yevjevich, V. & Lane, W.L., 1980. Applied Modeling of Hydrologic Time Series. Water resource Publications, P. O. Box 2841. Littleton, Colorado .80161, U.S.A. 484 P.
Salas, J. D. (1980). Applied Modeling of Hydrologic Time Series. Water Resources Publication.
Shabani, S., Samadianfard, S., Sattari, M.T., Mosavi, A., Shamshirband, S., Kmet, T. & Varkonyi-Koczy, A.R., 2020. Modeling pan evaporation using Gaussian process regression K-nearest neighbors random forest and support vector machines; comparative analysis. Atmosphere, 11(1), 66.
Swart, N.C., Cole, J.N., Kharin, V.V., Lazare, M., Scinocca, J.F., Gillett, N.P. ... & Winter, B., 2019. The Canadian earth system model version 5 (CanESM5. 0.3). Geoscientific Model Development, 12(11), 4823-4873.
Swinscow, T.D.V. & Campbell, M.J., 2002. Statistics at square one (No. Ed. 10, pp. viii+-158). London: Bmj.
Tabatabaei, S.M., Dastourani, M., Eslamian, S. & Nazeri Tahroudi, M., 2025. Comparison of kriging methods in rainfall estimation based on entropy-copula (case study: Simineh river, lake Urmia Basin, Iran). Earth Science Informatics, 18(1), 75.
Vijayakumar, S. & Ramaraj, A.P., 2024. CMIP5 multi-model ensemble-based future climate projection for the Odisha state of India. Current Science (00113891), 127(11).
Vinta, S.R. & Peeriga, R., 2024. Rainfall prediction using xgb model with the australian dataset. EAI Endorsed Transactions on Energy Web, 11.
Yu, H., Nghia, T., Low, B.K.H. & Jaillet, P., 2019, July. Stochastic variational inference for Bayesian sparse Gaussian process regression. In 2019 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.
Zarei, K., Mohammadi, H. & Bazgeer, S., 2019. Simulation of Gorgan Synoptic Station Temperature and Precipitation with RCP Scenarios. Physical Geography Research, 51(4), 563-579.